Thomas Downey | € Les hommes du feu 2017 | 90 min | Dick Powell

1. Ejemplo Muestreo aleatorio simple:


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "1. Ejemplo Muestreo aleatorio simple:"

Transcripción

1 1. Ejemplo Muestreo aleatorio simple: Suponga que estamos investigando sobre el porcentaje de alumnos que trabajan de una población de 20 alumnos de la Universidad Michoacana. Base de datos de la población: Juan SI María NO Alicia NO Fernanda NO Pedro NO Julio SI Marcos NO Rosa NO Alberto SI Fabián NO Jorge SI Ana NO José NO Laura NO Carlos NO Enrique NO Miguel NO Carmen SI Victoria SI Marcelo SI a) Elija una muestra aleatoria simple de tamaño n=4 de esta población. Indique los pasos para elegir la muestra. b) Primero:Asignamos número a cada alumno del 1 al 20: Número NombreAlumno Trabaja? Número 1 Juan SI 11 María NO 2 Alicia NO 12 Fernanda NO 3 Pedro NO 13 Julio SI 4 Marcos NO 14 Rosa NO 5 Alberto SI 15 Fabián NO 6 Jorge SI 16 Ana NO 7 José NO 17 Laura NO 8 Carlos NO 18 Enrique NO 9 Miguel NO 19 Carmen SI 10 Victoria SI 20 Marcelo SI c) Segundo: Generamos números aleatorios. Usar Excel con la función Aleatorio.Entre(inicio, fin), para generar 4 números aleatorios, entre el 1 y el 20 sin repetir. d) Los números seleccionados son? 10, 1, 11, 20 e) Por lo tanto la muestra está compuesta por? Victoria, Juan, María, Marcelo (3 mujeres y 1 hombre). Trabajan: Victoria, Juan, Marcelo No trabajan: María

2 f) Cual es el parámetro y cual es el estadístico de la muestra aleatoria simple de tamaño 4. El Parámetro es el porcentaje de alumnos que trabajan en la población de tamaño N=20 alumnos, es decir: P = no. de personas que trabajan / N = 7 / 20 = 0.35 ó 35% El Estadístico es el porcentaje de alumnos que trabajan en la muestra de tamaño n=4 alumnos, es decir: P = no. de personas que trabajan / n = 3 / 4 = 0.75 ó 75%

3 2. Ejemplo muestreo sistemático a) Elija una muestra aleatoria simple de tamaño n=4 de esta población. Indique los pasos para elegir la muestra. b) Primero: Obtenemos la periodicidad k = N/n. k = 20 / 4 = 5 c) Segundo: Generamos un número aleatorio i que cumpla con 1 < i < k (1 < i < 5). i=2 b) Tercero: Determinamos los elementos que integran la muestra: 2, 7, 12, 17 e) Por lo tanto la muestra está compuesta por? Alicia, José, Fernanda, Laura (3 mujeres, 1 hombre) Trabajan: No trabajan: Alicia, José, Fernanda, Laura f) Cual es el estadístico de la muestra aleatoria simple de tamaño 4. P = no. de personas que trabajan / n = 0 / 4 = 0 ó 0%

4 2. Ejemplo Muestreo estratificado: Juan SI María NO Alicia NO Fernanda NO Pedro NO Julio SI Marcos NO Rosa NO Alberto SI Fabián NO Jorge SI Ana NO José NO Laura NO Carlos NO Enrique NO Miguel NO Carmen SI Victoria SI Marcelo SI a) Elija una muestra estratificada de tamaño n=4 de esta población. Indique los pasos para elegir la muestra. Respuesta: Para elegir una muestra estratificada, primero se dividen los hombres de las mujeres y se asignan número de identificación a cada estrato: Estrato Hombres Estrato Mujeres Número Nombre Alumno Número Nombre Alumno 1 Juan 1 Alicia 2 Pedro 2 Victoria 3 Marcos 3 María 4 Alberto 4 Fernanda 5 Jorge 5 Rosa 6 José 6 Ana 7 Carlos 7 Laura 8 Miguel 8 Carmen 9 Julio 10 Fabián 11 Enrique 12 Marcelo Usando la función de Excel para números aleatorios, se elige una muestra aleatoria simple de tamaño n=2 de los hombres, buscando números del 1 al 12. Los números elegidos son: 10 y 1. Por lo tanto la muestra del estrato de hombres queda constituida por Fabián y Juan. Fabián NO trabaja y Juan SI trabaja

5 Usando la función de Excel para números aleatorios, se elige una muestra aleatoria simple de tamaño n=2 de las mujeres, buscando números del 1 al 8. Los números elegidos son:1 y 4. Por lo tanto, la muestra del estrato de mujeres queda constituida por Alicia y Fernanda. Alicia y Fernanda NO trabajan. Por lo tanto, la muestra final queda constituida por Fabián, Juan, Alicia y Fernanda. Finalmente, la proporción de alumnos que trabaja en la muestra estratificada es de 25%, es decir: P = no. de personas que trabajan / n = 1 / 4 = 0.25 ó 25%

6 Ejercicio 1:Se tiene a la siguiente población de personas clasificadas como consumidores de drogas: Nombre Felipe Wilma José Viviana Pablo Rodrigo Carlos Catherine Claudia Valentina Enrique Antonio Gerardo Carmen Pamela María Alejandra Eduardo Ronal Susana Hugo Hernán Droga Pasta Base Cocaína Extasis Neoprén Cocaína Pasta Base Extasis Neoprén Relevon Heroína a) Seleccione una muestra aleatoria simple de tamaño n=6 de esta población. Describa la muestra seleccionada. b) Suponga que estamos investigando sobre el porcentaje de personas consumidoras de alcohol, calcule el parámetro y el estadístico adecuado. c) Seleccione y describa una muestra sistemática de tamaño 6 de esta población. Determine el porcentaje de personas consumidoras de alcohol en la muestra. d) Seleccione y describa una muestra estratificada de tamaño 6 de esta población. Determine el porcentaje de personas consumidoras de alcohol en la muestra. e) Aplique el censo a la población para conocer el porcentaje de personas consumidoras de alcohol.

7 Taller de Muestreo 1. El taller se trata de un estudio de mercado para un nuevo servicio de internet,se proporciona una lista o marco muestral con números telefónicos para marcar y preguntar en ese hogar cuánto está dispuesto a pagar al mes por un servicio de internet. Son 1000 números telefónicos,suponga que esta es toda su población, sería muy caro y demandaría mucho tiempo hablarles a todos;por lo que se desea solo marcar 30 números. Siga las instrucciones indicadas en el archivo,en resumen son realizar: 1.- Un muestreo aleatorio de 30 datos y coloque sus valores en la tabla indicada inmediatamente abajo. a) Muestreo Aleatorio Simple b) Muestreo Sistemático Para ambos casos debe calcularse: Media o promedio Mediana Moda Desviación estándar muestral Varianza muestral 2.-Ahora calcule las mismas variables para la población (es decir,calcule cual sería el resultado hablándoles a todos los elementos poblacionales, lo cual equivale a un CENSO). Comente lo siguiente: 1.- Que información relevante podemos obtener considerando los resultados del muestreo aleatorio simple y el muestreo sistemático. 2.- Compare los resultados del muestreo contra los del CENSO e interprete las diferencias o similitudes entre ambos.

EJERCICIOS RESUELTOS. MUESTREO.

EJERCICIOS RESUELTOS. MUESTREO. EJERCICIOS RESUELTOS. MUESTREO. Ejemplo 1: Suponga que estamos investigando sobre el porcentaje de alumnos que trabajan de una población de 20 alumnos de la Universidad de Talca. Base de datos de la población:

Más detalles

Distribuciones muestrales. Distribución muestral de Medias

Distribuciones muestrales. Distribución muestral de Medias Distribuciones muestrales. Distribución muestral de Medias Algunas secciones han sido modificadas de: Apuntes de Estadística, Mtra Leticia de la Torre Instituto Tecnológico de Chiuhuahua TEORIA DEL MUESTREO

Más detalles

Tema1: Introducción a La Estadística 1.1-1

Tema1: Introducción a La Estadística 1.1-1 1 Tema1: Introducción a La Estadística 1.1-1 Determine a cuáles de los términos se hacen referencia en el siguiente estudio : población, muestra, parámetro, estadístico, variable, data. Se quiere saber

Más detalles

Población finita. reemplazo sobre poblaciones de tamaño finito N.

Población finita. reemplazo sobre poblaciones de tamaño finito N. Población finita 171 El TCL y las varianzas muestrales de medias y proporciones se basan en la premisa de muestras seleccionadas con reemplazo o de una población infinita. Sin embargo, en muchos estudios

Más detalles

ÍNDICE CAPITULO UNO CAPITULO DOS. Pág.

ÍNDICE CAPITULO UNO CAPITULO DOS. Pág. ÍNDICE CAPITULO UNO Pág. Concepto de Estadística 1 Objetivo 1 Diferencia entre estadísticas y estadística 1 Uso de la estadística 1 Divisiones de la estadística 1 1. Estadística Descriptiva 1 2. Estadística

Más detalles

Estadistica II Tema 1. Inferencia sobre una población. Curso 2009/10

Estadistica II Tema 1. Inferencia sobre una población. Curso 2009/10 Estadistica II Tema 1. Inferencia sobre una población Curso 2009/10 Tema 1. Inferencia sobre una población Contenidos Introducción a la inferencia Estimadores puntuales Estimación de la media y la varianza

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística Probabilidad y Estadística Tema 8 Distribución normal estándar y distribuciones relacionadas Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Explicar los conceptos de la distribución

Más detalles

MUESTREO Y MEDICIÓN MÉTODOS DE MUESTREO PROBABILÍSTICO Y NO PROBABILÍSTICO. FeGoSa

MUESTREO Y MEDICIÓN MÉTODOS DE MUESTREO PROBABILÍSTICO Y NO PROBABILÍSTICO. FeGoSa MÉTODOS DE MUESTREO PROBABILÍSTICO Y NO PROBABILÍSTICO TAMAÑO DE LA MUESTRA AL ESTIMAR LA MEDIA DE LA POBLACIÓN Al prever el intervalo de confianza resultante de una media muestral y la desviación estándar,

Más detalles

6. ESTIMACIÓN DE PARÁMETROS

6. ESTIMACIÓN DE PARÁMETROS PROBABILIDAD Y ESTADÍSTICA Sesión 7 6. ESTIMACIÓN DE PARÁMETROS 6.1 Características el estimador 6. Estimación puntual 6..1 Métodos 6..1.1 Máxima verosimilitud 6..1. Momentos 6.3 Intervalo de confianza

Más detalles

Tema 5. Muestreo y distribuciones muestrales

Tema 5. Muestreo y distribuciones muestrales Tema 5. Muestreo y distribuciones muestrales Contenidos Muestreo y muestras aleatorias simples La distribución de la media en el muestreo La distribución de la varianza muestral Lecturas recomendadas:

Más detalles

Teoría de la decisión Estadística

Teoría de la decisión Estadística Conceptos básicos Unidad 7. Estimación de parámetros. Criterios para la estimación. Mínimos cuadrados. Regresión lineal simple. Ley de correlación. Intervalos de confianza. Distribuciones: t-student y

Más detalles

Documento elaborado por: Francisco Javier Rodríguez Cortés Matemático Facultad de Ciencias Exactas - Universidad de Antioquia INTRODUCCIÓN

Documento elaborado por: Francisco Javier Rodríguez Cortés Matemático Facultad de Ciencias Exactas - Universidad de Antioquia INTRODUCCIÓN Documento elaborado por: Francisco Javier Rodríguez Cortés Matemático Facultad de Ciencias Exactas - Universidad de Antioquia INTRODUCCIÓN La Estadística se ocupa de los métodos y procedimientos para recoger,

Más detalles

Técnicas Cuantitativas para el Management y los Negocios I

Técnicas Cuantitativas para el Management y los Negocios I Técnicas Cuantitativas para el Management y los Negocios I Licenciado en Administración Módulo II: ESTADÍSTICA INFERENCIAL Contenidos Módulo II Unidad 4. Probabilidad Conceptos básicos de probabilidad:

Más detalles

Unidad Temática 5 Estimación de parámetros: medias, varianzas y proporciones

Unidad Temática 5 Estimación de parámetros: medias, varianzas y proporciones Unidad Temática 5 Estimación de parámetros: medias, varianzas y proporciones Responda verdadero o falso. Coloque una letra V a la izquierda del número del ítem si acepta la afirmación enunciada, o una

Más detalles

Distribución muestral de proporciones. Algunas secciones han sido tomadas de: Apuntes de Estadística Inferencial Instituto Tecnológico de Chiuhuahua

Distribución muestral de proporciones. Algunas secciones han sido tomadas de: Apuntes de Estadística Inferencial Instituto Tecnológico de Chiuhuahua Distribución muestral de proporciones Algunas secciones han sido tomadas de: Apuntes de Estadística Inferencial Instituto Tecnológico de Chiuhuahua Distribución muestral de Proporciones Existen ocasiones

Más detalles

Nombre de la asignatura: Probabilidad y Estadística Ambiental

Nombre de la asignatura: Probabilidad y Estadística Ambiental Nombre de la asignatura: Probabilidad y Estadística Ambiental Créditos: 2 2-4 Aportación al perfil Proporcionar los fundamentos necesarios para el manejo estadístico de datos experimentales que le permitan

Más detalles

TEMA 3. Población y muestra

TEMA 3. Población y muestra TEMA 3. Población y muestra Alicia Nieto Reyes BIOESTADÍSTICA Alicia Nieto Reyes (BIOESTADÍSTICA) TEMA 3. Población y muestra 1 / 7 Conceptos de población y muestra Objetivo principal de la estadística:

Más detalles

Yenny Bayona Sambrano, Edwin Cerna Figueroa, Kelva Llanos Miranda, Luis Montesinos Ruiz, Silvia Pajuelo Rojas

Yenny Bayona Sambrano, Edwin Cerna Figueroa, Kelva Llanos Miranda, Luis Montesinos Ruiz, Silvia Pajuelo Rojas Estadística I: desde un enfoque por competencias / Yenny Bayona Sambrano, Edwin Cerna Figueroa, Kelva Llanos Miranda, Luis Montesinos Ruiz,Silvia Pajuelo Rojas. -- 2a ed. -- Lima: Universidad San Ignacio

Más detalles

CONCEPTOS BÁSICOS DE ESTADÍSTICA

CONCEPTOS BÁSICOS DE ESTADÍSTICA CONCEPTOS BÁSICOS DE ESTADÍSTICA Jorge M. Galbiati Riesco La Estadística está constituida por un conjunto de métodos de análisis de datos que pueden agruparse en tres categorías: La Estadística Descriptiva,

Más detalles

Inferencia estadística Estimación - 1. MasMates.com Colecciones de ejercicios

Inferencia estadística Estimación - 1. MasMates.com Colecciones de ejercicios 1. Una ciudad de 2000 habitantes está poblada por personas de pelo negro, rubio o castaño. Se ha seleccionado, mediante muestreo aleatorio estratificado con afijación proporcional, una muestra constituida

Más detalles

Estadística Empresarial. Cuaderno de Ejercicios. Temas 2. Análisis estadístico de una variable: medidas de posición y medidas de dispersión

Estadística Empresarial. Cuaderno de Ejercicios. Temas 2. Análisis estadístico de una variable: medidas de posición y medidas de dispersión Estadística Empresarial Cuaderno de Ejercicios Temas 2 Análisis estadístico de una variable: medidas de posición y medidas de dispersión EJERCICIO 1. La siguiente tabla recoge el número de Paradores Nacionales,

Más detalles

ESTUDIO CIS N1 2200 DEMANDA DE SEGURIDAD Y VICTIMIZACIÓN FICHA TÉCNICA

ESTUDIO CIS N1 2200 DEMANDA DE SEGURIDAD Y VICTIMIZACIÓN FICHA TÉCNICA Convenio: Municipios de más de 50.000 habitantes de las provincias de Alicante, Almería, Asturias, Baleares, Barcelona, Cádiz, La Coruña, Granada, Madrid, Málaga, Murcia, Las Palmas, Pontevedra, Santa

Más detalles

Informe a CEENL sobre encuestas de preferencia electoral

Informe a CEENL sobre encuestas de preferencia electoral Informe a CEENL sobre encuestas de preferencia electoral Publicación en TV Azteca Noreste y El Horizonte: 20 de Mayo 2015 1 Informe sobre las encuestas de preferencias electorales para el Estado de Nuevo

Más detalles

Estadística Inferencial. Sesión 5. Prueba de hipótesis

Estadística Inferencial. Sesión 5. Prueba de hipótesis Estadística Inferencial. Sesión 5. Prueba de hipótesis Contextualización. En la práctica, es frecuente tener que tomar decisiones acerca de poblaciones con base en información de muestreo. Tales decisiones

Más detalles

Muestreo y Distribuciones muestrales. 51 SOLUCIONES

Muestreo y Distribuciones muestrales. 51 SOLUCIONES Muestreo y Distribuciones muestrales. 51 Universidad Politécnica de Cartagena Dpto. Matemática Aplicada y Estadística Métodos estadísticos de la ingeniería Soluciones de la hoja de problemas 5. Muestreo

Más detalles

1. Límites normales de tolerancia: estos límites asumen que los datos son una muestra aleatoria de una distribución normal.

1. Límites normales de tolerancia: estos límites asumen que los datos son una muestra aleatoria de una distribución normal. Límites de Tolerancia Los límites de tolerancia proporcionan un rango de valores para X tal que se puede tener 100(1-α) % de confianza que P por ciento de la población, de la cual provienen los datos,

Más detalles

Juan Muñoz, Sistemas Integrales Santiago, 12 de abril de 2013

Juan Muñoz, Sistemas Integrales Santiago, 12 de abril de 2013 Sesión 2A Las limitaciones del Muestreo Aleatorio Simple y La práctica del muestreo para encuestas de hogares Por favor, conéctese al Canal 50 Juan Muñoz, Sistemas Integrales Santiago, 12 de abril de 2013

Más detalles

Tema 5: Principales Distribuciones de Probabilidad

Tema 5: Principales Distribuciones de Probabilidad Tema 5: Principales Distribuciones de Probabilidad Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 5: Principales Distribuciones de Probabilidad

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A OPCIÓN A 1 a 1/ 0 Se consideran las matrices A = y B =, 0 1 3/ 4 0 siendo a un número real cualquiera 014 a) (1 punto) Obtenga la matriz A 3 b) (15 puntos) Para a =, resuelva la ecuación matricial A X

Más detalles

Prueba de hipótesis. 1. Considerando lo anterior específica: a. La variable de estudio: b. La población: c. El parámetro. d. Estimador puntual:

Prueba de hipótesis. 1. Considerando lo anterior específica: a. La variable de estudio: b. La población: c. El parámetro. d. Estimador puntual: Prueba de hipótesis Problema Un grupo de profesores, de cierto estado de la república, plantea una investigación acerca del aprendizaje de las ciencias naturales en la escuela primaria. Uno de los objetivos

Más detalles

Tema 11: Intervalos de confianza.

Tema 11: Intervalos de confianza. Tema 11: Intervalos de confianza. Presentación y Objetivos. En este tema se trata la estimación de parámetros por intervalos de confianza. Consiste en aproximar el valor de un parámetro desconocido por

Más detalles

PONTIFICIA UNIVERSIDAD CATOLICA DEL ECUADOR FACULTAD DE INGENIERIA ESCUELA DE INGENIERIA DE SISTEMAS

PONTIFICIA UNIVERSIDAD CATOLICA DEL ECUADOR FACULTAD DE INGENIERIA ESCUELA DE INGENIERIA DE SISTEMAS 1 1. DATOS INFORMATIVOS PONTIFICIA UNIVERSIDAD CATOLICA DEL ECUADOR FACULTAD DE INGENIERIA ESCUELA DE INGENIERIA DE SISTEMAS MATERIA: ESTADISTICA CODIGO: 11715 CARRERA: INGENIERIA DE SISTEMAS NIVEL: TERCERO

Más detalles

OPINIÓN ALCALDES 2015 # 1

OPINIÓN ALCALDES 2015 # 1 OPINIÓN ALCALDES 2015 # 1 -Bogotá- Mayo 2015 SEDE PRINCIPAL: Calle 32F # 81-47, TELS: 250 70 80, FAX: 250 69 94 MEDELLIN - COLOMBIA SUCURSALES: BOGOTA- 747 02 70, CALI- 880 18 90, BARRANQUILLA- 368 02

Más detalles

Propiedades en una muestra aleatoria

Propiedades en una muestra aleatoria Capítulo 5 Propiedades en una muestra aleatoria 5.1. Conceptos básicos sobre muestras aleatorias Definición 5.1.1 X 1,, X n son llamadas una muestra aleatoria de tamaño n de una población f(x) si son variables

Más detalles

13 El muestreo estadístico

13 El muestreo estadístico 13 El muestreo estadístico ACTIVIDADES INICIALES 13.I. Las notas obtenidas en matemáticas por 1 estudiantes de.º de Bachillerato son: 9, 5, 3, 9, 0, 10,, 1, 8, 9, 7, 6 a) Calcula la media. b) Halla la

Más detalles

MODELO DE RESPUESTAS Objetivos del 1 al 9

MODELO DE RESPUESTAS Objetivos del 1 al 9 PRUEBA INTEGRAL LAPSO 05-764 - /9 Universidad Nacional Abierta Probabilidad y Estadística I (Cód. 764) Vicerrectorado Académico Cód. Carrera: 6 Fecha: 0-04-06 MODELO DE RESPUESTAS Objetivos del al 9 OBJ

Más detalles

PLAN DE MUESTREO. Conceptos necesarios para el muestreo

PLAN DE MUESTREO. Conceptos necesarios para el muestreo PLAN DE MUESTREO El muestreo se utiliza con frecuencia en IM, ya que ofrece beneficios importantes: 1. ahorra dinero: en lugar de entrevistar a un millón de personas, una muestra se puede entrevistar de

Más detalles

ESTADÍSTICA BÁSICA Dirección Redes en Salud Pública 2015 09 16

ESTADÍSTICA BÁSICA Dirección Redes en Salud Pública 2015 09 16 ESTADÍSTICA BÁSICA Dirección Redes en Salud Pública 2015 09 16 Es el conjunto sistemático de procedimientos para la observación, registro, organización, síntesis y análisis e interpretación de los fenómenos

Más detalles

Criterios del Registro Federal de Electores en materia de verificación del apoyo ciudadano para la Consulta Popular

Criterios del Registro Federal de Electores en materia de verificación del apoyo ciudadano para la Consulta Popular Ejercicio muestral para corroborar la autenticidad de las firmas en las solicitudes de Consulta Popular El artículo 33 de la Ley General de Consulta Popular establece lo siguiente: Artículo 33. El Instituto,

Más detalles

TEMA 3: Muestreo. Ing. Jadlyn González Ing. MétodosII (1º -2010)

TEMA 3: Muestreo. Ing. Jadlyn González Ing. MétodosII (1º -2010) TEMA 3: Muestreo Ing. MétodosII (1º -2010) Muestreo El muestreo de trabajo es una técnica que se utiliza para investigar las proporciones del tiempo total dedicada a las diversas actividades que componen

Más detalles

PROFESORADO EN EDUCACIÓN SECUNDARIA DE LA MODALIDAD TÉCNICO PROFESIONAL EN CONCURRENCIA CON EL TÍTULO DE BASE.

PROFESORADO EN EDUCACIÓN SECUNDARIA DE LA MODALIDAD TÉCNICO PROFESIONAL EN CONCURRENCIA CON EL TÍTULO DE BASE. PROFESORADO EN EDUCACIÓN SECUNDARIA DE LA MODALIDAD TÉCNICO PROFESIONAL EN CONCURRENCIA CON EL TÍTULO DE BASE. ESPACIO CURRICULAR : PROBABILIDAD Y ESTADÍSTICA UNIDAD Nº I ESTADÍSTICA DESCRIPTIVA AÑO: 2010

Más detalles

Departamento Administrativo Nacional de Estadística. Dirección de Censos y Demografía

Departamento Administrativo Nacional de Estadística. Dirección de Censos y Demografía Departamento Administrativo Nacional de Estadística Dirección de Censos y Demografía ESTIMACIÓN E INTERPRETACIÓN DEL COEFICIENTE DE VARIACIÓN DE LA ENCUESTA COCENSAL CENSO GENERAL 2005 - CGRAL Junio de

Más detalles

LA DISTRIBUCIÓN NORMAL

LA DISTRIBUCIÓN NORMAL LA DISTRIBUCIÓN NORMAL En estadística y probabilidad se llama distribución normal, distribución de Gauss o distribución gaussiana, a una de las distribuciones de probabilidad que con más frecuencia aparece

Más detalles

Energía Latina S.A.- Personas Naturales Relacionadas. Persona Rut Cargo Persona relacionada Rut Relación Fernando del Sol

Energía Latina S.A.- Personas Naturales Relacionadas. Persona Rut Cargo Persona relacionada Rut Relación Fernando del Sol Energía Latina S.A.- Personas Naturales Relacionadas Persona Rut Cargo Persona relacionada Rut Relación Fernando del Sol 6.926.372-0 Director/ Hijo Guzmán Presidente Fernando del Sol Santa Cruz 15.639.954-K

Más detalles

Estadística II Tema 3. Comparación de dos poblaciones. Curso 2010/11

Estadística II Tema 3. Comparación de dos poblaciones. Curso 2010/11 Estadística II Tema 3. Comparación de dos poblaciones Curso 2010/11 Tema 3. Comparación de dos poblaciones Contenidos Comparación de dos poblaciones: ejemplos, datos apareados para la reducción de la variabilidad

Más detalles

ESTADÍSTICA INFERENCIAL

ESTADÍSTICA INFERENCIAL ESTADÍSTICA INFERENCIAL ESTADÍSTICA INFERENCIAL 1 Sesión No. 9 Nombre: Pruebas de hipótesis referentes al valor de la media de la población Contextualización Los métodos estadísticos y las técnicas de

Más detalles

PARTE COMÚN MATERIA: FUNDAMENTOS DE MATEMÁTICAS

PARTE COMÚN MATERIA: FUNDAMENTOS DE MATEMÁTICAS CALIFICACIÓN: Consejería de Educación, Ciencia y Cultura PRUEBAS DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR DE FORMACIÓN PROFESIONAL Junio 2011 Resolución de 9 de marzo de 2011 (DOCM de 5 de abril)

Más detalles

Test de Kolmogorov-Smirnov

Test de Kolmogorov-Smirnov Test de Kolmogorov-Smirnov Georgina Flesia FaMAF 2 de junio, 2011 Test de Kolmogorov-Smirnov El test chi-cuadrado en el caso continuo H 0 : Las v.a. Y 1, Y 2,..., Y n tienen distribución continua F. Particionar

Más detalles

Tema II. Las muestras y la teoría paramétrica

Tema II. Las muestras y la teoría paramétrica 2.1. Muestras y muestreos: - La muestra:. Subconjunto de elementos de la población. Necesidad práctica:. Motivos económicos. Imposibilidad (práctica/teórica) de estudiar TODA la población. Inconveniencia

Más detalles

Distribución de Probabilidad Normal

Distribución de Probabilidad Normal Distribución de Probabilidad Normal Departamento de Estadística-FACES-ULA 22 de Diciembre de 2013 Introducción La distribución normal es quizás la distribución de probabilidad para variables aleatorias

Más detalles

DISTRIBUCIONES DE PROBABILIDAD (RESUMEN)

DISTRIBUCIONES DE PROBABILIDAD (RESUMEN) DISTRIBUCIONES DE PROBABILIDAD (RESUMEN) VARIABLE ALEATORIA: un experimento produce observaciones numéricas que varían de muestra a muestra. Una VARIABLE ALEATORIA se define como una función con valores

Más detalles

Problemas resueltos. Tema 12. 2º La hipótesis alternativa será que la distribución no es uniforme.

Problemas resueltos. Tema 12. 2º La hipótesis alternativa será que la distribución no es uniforme. Tema 12. Contrastes No Paramétricos. 1 Problemas resueltos. Tema 12 1.- En una partida de Rol se lanza 200 veces un dado de cuatro caras obteniéndose 60 veces el número 1, 45 veces el número 2, 38 veces

Más detalles

Distribución de las proporciones muestrales. Estimación de una proporción

Distribución de las proporciones muestrales. Estimación de una proporción Distribución de las medias muestrales. Estimación de la media 1. Se supone que la estatura de los chicos de 18 años de cierta población sigue una distribución normal de media 16 cm y desviación típica

Más detalles

Estadística Avanzada y Análisis de Datos

Estadística Avanzada y Análisis de Datos 1-1 Estadística Avanzada y Análisis de Datos Javier Gorgas y Nicolás Cardiel Curso 2006-2007 2007 Máster Interuniversitario de Astrofísica 1-2 Introducción En ciencia tenemos que tomar decisiones ( son

Más detalles

Teoría Elemental del Muestreo

Teoría Elemental del Muestreo Teoría Elemental del Muestreo Definiciones. Población: Es aquel conjunto de individuos o elementos que podemos observar, medir una característica o atributo. Ejemplos de población: El conjunto de todos

Más detalles

UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA

UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDAD GUÍA 4: VARIABLES ALEATORIAS CONTINUAS Profesores: Jaime Arrué A. - Hugo S. Salinas. Primer Semestre

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 004 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Junio, Ejercicio 3, Parte II, Opción A Junio, Ejercicio 3, Parte II, Opción B Reserva

Más detalles

Validación de los métodos microbiológicos HERRAMIENTAS ESTADISTICAS. Bqca. QM Alicia I. Cuesta, Consultora Internacional de la FAO

Validación de los métodos microbiológicos HERRAMIENTAS ESTADISTICAS. Bqca. QM Alicia I. Cuesta, Consultora Internacional de la FAO Validación de los métodos microbiológicos HERRAMIENTAS ESTADISTICAS Bqca. QM Alicia I. Cuesta, Consultora Internacional de la FAO Objetivos de la clase Objetivos de la estadística. Concepto y parámetros

Más detalles

MUESTREO DISTRIBUCIÓN DE ESTADÍSTICOS MUESTRALES

MUESTREO DISTRIBUCIÓN DE ESTADÍSTICOS MUESTRALES MUESTREO DISTRIBUCIÓN DE ESTADÍSTICOS MUESTRALES Marta Alperin Profesora Adjunta de Estadística [email protected] http://www.fcnym.unlp.edu.ar/catedras/estadistica OBJETIVO DE TRABAJOS DE INVESTIGACIÓN

Más detalles

4. Medidas de tendencia central

4. Medidas de tendencia central 4. Medidas de tendencia central A veces es conveniente reducir la información obtenida a un solo valor o a un número pequeño de valores, las denominadas medidas de tendencia central. Sea X una variable

Más detalles

Análisis estadístico básico (I) Magdalena Cladera Munar [email protected] Departament d Economia Aplicada Universitat de les Illes Balears

Análisis estadístico básico (I) Magdalena Cladera Munar mcladera@uib.es Departament d Economia Aplicada Universitat de les Illes Balears Análisis estadístico básico (I) Magdalena Cladera Munar [email protected] Departament d Economia Aplicada Universitat de les Illes Balears CONTENIDOS Introducción a la inferencia estadística. Muestreo. Estimación

Más detalles

DOCUMENTO 3: DISTRIBUCIÓN DE PROBABILIDAD DE V. A. CONTINUA: LA DISTRIBUCIÓN NORMAL

DOCUMENTO 3: DISTRIBUCIÓN DE PROBABILIDAD DE V. A. CONTINUA: LA DISTRIBUCIÓN NORMAL DOCUMENTO 3: DISTRIBUCIÓN DE PROBABILIDAD DE V. A. CONTINUA: LA DISTRIBUCIÓN NORMAL 3.1 INTRODUCCIÓN Como ya sabes, una distribución de probabilidad es un modelo matemático que nos ayuda a explicar los

Más detalles

D.2 ANÁLISIS ESTADÍSTICO DE LAS TEMPERATURAS DE VERANO

D.2 ANÁLISIS ESTADÍSTICO DE LAS TEMPERATURAS DE VERANO Anejo Análisis estadístico de temperaturas Análisis estadístico de temperaturas - 411 - D.1 INTRODUCCIÓN Y OBJETIVO El presente anejo tiene por objeto hacer un análisis estadístico de los registros térmicos

Más detalles

El método utilizado en esta investigación será el método probabilístico ya que el universo en estudio es finito.

El método utilizado en esta investigación será el método probabilístico ya que el universo en estudio es finito. CAPITULO III: MARCO METODOLOGICO. 3.1 TIPO DE INVESTIGACION: El tipo de estudio que se desarrollara en la investigación es, descriptiva, porque está dirigido a determinar cómo es, cómo está la situación

Más detalles

Prácticas de inferencia y muestreo.

Prácticas de inferencia y muestreo. Prácticas de inferencia y muestreo. Contenido de la presentación Una herramienta de creación de actividades: HotPotatoes. Applets: algunos ejemplos sobre inferencia y estadística descriptiva. Excel como

Más detalles

FACULTAD DE ECONOMÍA Y ADMINISTRACIÓN -UNCO CARGOS INTERINOS A REGULARIZAR. Legajo Apellido Nombre Departamento Área Orientación Cargo

FACULTAD DE ECONOMÍA Y ADMINISTRACIÓN -UNCO CARGOS INTERINOS A REGULARIZAR. Legajo Apellido Nombre Departamento Área Orientación Cargo CARGOS INTERINOS A REGULARIZAR 59059 MORALES PATRICIA ALEJANDRA ADMINISTRACIÓN ADMINISTRACIÓN ADMINISTRACION GENERAL PAD3 53136 MUÑOZ NESTOR OMAR ADMINISTRACIÓN ADMINISTRACIÓN ADMINISTRACION GENERAL AYP3

Más detalles

Distribuciones muestrales. Distribución muestral de Medias

Distribuciones muestrales. Distribución muestral de Medias Distribuciones muestrales. Distribución muestral de Medias TEORIA DEL MUESTREO Uno de los propósitos de la estadística inferencial es estimar las características poblacionales desconocidas, examinando

Más detalles

Reformas Estructurales

Reformas Estructurales PROYECTO: Reformas Estructurales Encuesta Nacional Trimestral / 1 Reformas Estructurales Encuesta Nacional Trimestral Como usted tal vez sepa durante la administración del presidente Enrique Peña Nieto

Más detalles

Tamaño de muestra agropecuaria

Tamaño de muestra agropecuaria Pablo Tadeo Cruz * RESUMEN En este documento, se analizan condiciones de productividad y rentabilidad de los Sistemas de Producción Agropecuaria, dónde se aplica metodología de determinación de tamaño

Más detalles

Intervalos de Confianza para dos muestras

Intervalos de Confianza para dos muestras Intervalos de Confianza para dos muestras Álvaro José Flórez 1 Escuela de Ingeniería Industrial y Estadística Facultad de Ingenierías Febrero - Junio 2012 Comparación de dos poblaciones La comparación

Más detalles

2. OBJETIVOS ESPECÍFICOS Y METODOLOGÍA

2. OBJETIVOS ESPECÍFICOS Y METODOLOGÍA 2. OBJETIVOS ESPECÍFICOS Y METODOLOGÍA A continuación, se describe de forma detallada cuáles son los objetivos específicos de información y la metodología empleada tanto en la recogida de información como

Más detalles

CAPITULO III. METODOLOGIA DE LA INVESTIGACION

CAPITULO III. METODOLOGIA DE LA INVESTIGACION CAPITULO III. METODOLOGIA DE LA INVESTIGACION La metodología aplicada en esta investigación fue la siguiente: 1. Definición del problema. 2. Diseño de la investigación. 3. Muestreo estadístico. 4. Procedimiento

Más detalles

Guía para maestro. Tablas de frecuencia. Compartir Saberes. www.compartirpalabramaestra.org

Guía para maestro. Tablas de frecuencia. Compartir Saberes. www.compartirpalabramaestra.org Guía para maestro Guía realizada por Nury Yolanda Espinosa Baracaldo Profesional en Matemáticas [email protected] Se pueden elaborar tablas de distribución de frecuencias para datos no agrupados

Más detalles

Diferencia de medias. Estadística II Equipo Docente: Iris Gallardo Andrés Antivilo Francisco Marro

Diferencia de medias. Estadística II Equipo Docente: Iris Gallardo Andrés Antivilo Francisco Marro Sesión 15 Prueba de Hipótesis para la Diferencia de medias En qué contexto es útil una prueba de hipótesis i para la diferencia i de medias? 1. Cuando se trabaja simultáneamente con una variable categórica

Más detalles

Informe sobre el Cálculo de Errores de Muestreo. Encuesta de Población en Relación con la Actividad (PRA)

Informe sobre el Cálculo de Errores de Muestreo. Encuesta de Población en Relación con la Actividad (PRA) Informe sobre el Cálculo de Errores de Muestreo Encuesta de Población en Relación con la Actividad (PRA) EUSKAL ESTATISTIKA ERAKUNDA INDICE 1. Introducción...3 2. Método de expansión de Taylor...3 3. Cálculo

Más detalles

PARTE II: MUESTREO... 10 6.- CONCEPTOS BÁSICOS... 10 7.- MÉTODOS DE MUESTREO... 10 8.- NÚMERO DE MUESTRAS... 10 9.- DISTRIBUCIONES MUESTRALES...

PARTE II: MUESTREO... 10 6.- CONCEPTOS BÁSICOS... 10 7.- MÉTODOS DE MUESTREO... 10 8.- NÚMERO DE MUESTRAS... 10 9.- DISTRIBUCIONES MUESTRALES... Contenidos: PARTE I: DISTRIBUCIONES DE PROBABILIDAD... 2 1.- VARIABLES ALEATORIAS... 2 2.- DISTRIBUCIONES DE PROBABILIDAD... 3 3.- LA DISTRIBUCIÓN BINOMIAL... 5 4.- LA DISTRIBUCIÓN NORMAL... 7 5.- USO

Más detalles

IV ESTUDIO NACIONAL SOBRE CONSUMO DE DROGAS CONSUMO DE EXTASIS Y HEROÍNA

IV ESTUDIO NACIONAL SOBRE CONSUMO DE DROGAS CONSUMO DE EXTASIS Y HEROÍNA REPUBLICA DE CHILE MINISTERIO DEL INTERIOR CONSEJO NACIONAL PARA EL CONTROL DE ESTUPEFACIENTES ÁREA DE ESTUDIOS DEL CONACE IV ESTUDIO NACIONAL SOBRE CONSUMO DE DROGAS CONSUMO DE EXTASIS Y HEROÍNA En el

Más detalles

Técnicas de muestreo. Sesgos más frecuentes

Técnicas de muestreo. Sesgos más frecuentes 9 Técnicas de muestreo. Sesgos más frecuentes Neus Canal Díaz 9.1. Introducción Las técnicas de muestreo son un conjunto de técnicas estadísticas que estudian la forma de seleccionar una muestra representativa

Más detalles

Muestreo y estimación: problemas resueltos

Muestreo y estimación: problemas resueltos Muestreo y estimación: problemas resueltos BENITO J. GONZÁLEZ RODRÍGUEZ ([email protected]) DOMINGO HERNÁNDEZ ABREU ([email protected]) MATEO M. JIMÉNEZ PAIZ ([email protected]) M. ISABEL MARRERO RODRÍGUEZ ([email protected])

Más detalles

Problemas resueltos. Temas 10 y 11 11, 9, 12, 17, 8, 11, 9, 4, 5, 9, 14, 9, 17, 24, 19, 10, 17, 17, 8, 23, 8, 6, 14, 16, 6, 7, 15, 20, 14, 15.

Problemas resueltos. Temas 10 y 11 11, 9, 12, 17, 8, 11, 9, 4, 5, 9, 14, 9, 17, 24, 19, 10, 17, 17, 8, 23, 8, 6, 14, 16, 6, 7, 15, 20, 14, 15. Temas 10 y 11. Contrastes paramétricos de hipótesis. 1 Problemas resueltos. Temas 10 y 11 1- las puntuaciones en un test que mide la variable creatividad siguen, en la población general de adolescentes,

Más detalles

Una población es el conjunto de todos los elementos a los que se somete a un estudio estadístico.

Una población es el conjunto de todos los elementos a los que se somete a un estudio estadístico. Introducción a la Melilla Definición de La trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comparaciones y sacar conclusiones. Un estudio estadístico

Más detalles

ESTADISTICA INFERENCIAL

ESTADISTICA INFERENCIAL ESTADISTICA INFERENCIAL PROFESOR: DR. JORGE ACUÑA A. 1 LA ESTADISTICA Estadística descriptiva Método científico Muestreo Información de entrada y de salida Estadística inferencial Inferencias Intervalos

Más detalles

El supermercado XYZ desea conocer el comportamiento del mismo en una sola hora de un día típico de trabajo.

El supermercado XYZ desea conocer el comportamiento del mismo en una sola hora de un día típico de trabajo. El supermercado XYZ desea conocer el comportamiento del mismo en una sola hora de un día típico de trabajo. El supermercado cuenta con 3 departamentos: Abarrotes, Embutidos y. Solamente el Departamento

Más detalles

Estadística Descriptiva

Estadística Descriptiva Estadística Descriptiva 1 Sesión No. 3 Nombre: Estadística descriptiva Contextualización Parte fundamental de la Estadística es la organización de los datos, una forma de realizar esta organización es

Más detalles

Distribución Normal Curva Normal distribución gaussiana

Distribución Normal Curva Normal distribución gaussiana Distribución Normal La distribución continua de probabilidad más importante en todo el campo de la estadística es la distribución normal. La distribución normal tiene grandes aplicaciones prácticas, en

Más detalles

Medidas de Dispersión

Medidas de Dispersión Medidas de Dispersión Revisamos la tarea de la clase pasada Distribución de Frecuencias de las distancias alcanzadas por las pelotas de golf nuevas: Dato Frecuencia 3.7 1 4.4 1 6.9 1 3.3 1 3.7 1 33.5 1

Más detalles

La distribución t de student. O lo que es lo mismo: La relación entre la cerveza y los estudios de estadística

La distribución t de student. O lo que es lo mismo: La relación entre la cerveza y los estudios de estadística La distribución t de student O lo que es lo mismo: La relación entre la cerveza y los estudios de estadística La distribución t de student fue descubierta por William S. Gosset en 1908. Gosset era un estadístico

Más detalles

DISTRIBUCIONES DE PROBABILIDAD BINOMIAL

DISTRIBUCIONES DE PROBABILIDAD BINOMIAL Probabilidad DISTRIBUCIONES DE PROBABILIDAD BINOMIAL Copyright 21, 27, 24 Pearson Education, Inc. All Rights Reserved. 4.1-1 Ejemplo de repaso Use la siguiente distribución de probabilidad para contestar

Más detalles

Técnicas de Inferencia Estadística II. Tema 3. Contrastes de bondad de ajuste

Técnicas de Inferencia Estadística II. Tema 3. Contrastes de bondad de ajuste Técnicas de Inferencia Estadística II Tema 3. Contrastes de bondad de ajuste M. Concepción Ausín Universidad Carlos III de Madrid Grado en Estadística y Empresa Curso 2014/15 Contenidos 1. Introducción

Más detalles

MEDIDAS DE ASIMETRÍA Y CURTOSIS EMPLEANDO EXCEL

MEDIDAS DE ASIMETRÍA Y CURTOSIS EMPLEANDO EXCEL 1) ASIMETRÍA MEDIDAS DE ASIMETRÍA Y CURTOSIS EMPLEANDO EXCEL Es una medida de forma de una distribución que permite identificar y describir la manera como los datos tiende a reunirse de acuerdo con la

Más detalles

Estadística Inferencial 3.7. Prueba de hipótesis para la varianza. σ gl = n -1. Es decir: Ho: σ 2 15 Ha: σ 2 > 15 (prueba de una cola)

Estadística Inferencial 3.7. Prueba de hipótesis para la varianza. σ gl = n -1. Es decir: Ho: σ 2 15 Ha: σ 2 > 15 (prueba de una cola) UNIDAD III. PRUEBAS DE HIPÓTESIS 3.7 Prueba de hipótesis para la varianza La varianza como medida de dispersión es importante dado que nos ofrece una mejor visión de dispersión de datos. Por ejemplo: si

Más detalles

Los nombres propios de los remitentes de remesas a México y de los receptores de ese ingreso

Los nombres propios de los remitentes de remesas a México y de los receptores de ese ingreso PROGRAMA DE APLICACIÓN DE LOS PRINCIPIOS GENERALES PARA LOS MERCADOS DE REMESAS DE AMÉRICA LATINA Y EL CARIBE Los nombres propios de los remitentes de remesas a México y de los receptores de ese ingreso

Más detalles

Principios de Psicología. Prof. Eddie Marrero, Ph. D. UPR-RUM Departamento de Ciencias Sociales

Principios de Psicología. Prof. Eddie Marrero, Ph. D. UPR-RUM Departamento de Ciencias Sociales Principios de Psicología Prof. Eddie Marrero, Ph. D. UPR-RUM Departamento de Ciencias Sociales Métodos de Investigación en Psicología Tema: Poblaciones y Muestras Introducción Cuando se realiza una investigación

Más detalles

Problemas de Ecuaciones de Primer Grado con una Incógnita

Problemas de Ecuaciones de Primer Grado con una Incógnita Problemas de Ecuaciones de Primer Grado con una Incógnita Son problemas que se resuelven planteando y resolviendo una ecuación de 1º grado con una incógnita. Es aconsejable seguir los siguientes pasos

Más detalles

Estadística II Examen Final - Enero 2012. Responda a los siguientes ejercicios en los cuadernillos de la Universidad.

Estadística II Examen Final - Enero 2012. Responda a los siguientes ejercicios en los cuadernillos de la Universidad. Estadística II Examen Final - Enero 2012 Responda a los siguientes ejercicios en los cuadernillos de la Universidad. No olvide poner su nombre y el número del grupo de clase en cada hoja. Indique claramente

Más detalles

Ministerio de Economía y Finanzas Dirección General de Programación Multianual del Sector Público

Ministerio de Economía y Finanzas Dirección General de Programación Multianual del Sector Público Metodología para el Diseño Muestral para la Evaluación de las Declaratorias de Viabilidad otorgadas en el marco del Sistema Nacional de Inversión Pública Ministerio de Economía y Finanzas Dirección General

Más detalles

INSTITUTO POLITÉCNICO NACIONAL SECRETARIA DE INVESTIGACIÓN Y POSGRADO

INSTITUTO POLITÉCNICO NACIONAL SECRETARIA DE INVESTIGACIÓN Y POSGRADO SIP-0 INSTITUTO POLITÉCNICO NACIONAL SECRETARIA DE INVESTIGACIÓN Y POSGRADO DIRECCIÓN DE POSGRADO FORMATO GUÍA PARA REGISTRO DE ASIGNATURAS Hoja 1 de I. DATOS DEL PROGRAMA Y LA ASIGNATURA 1.1 NOMBRE DEL

Más detalles

Tema 5. Variables aleatorias continuas

Tema 5. Variables aleatorias continuas Tema 5. Variables aleatorias continuas Cuestiones de Verdadero/Falso 1. Muchas medidas numéricas de diversos fenómenos, como por ejemplo errores de medida o medidas antropométricas, pueden modelarse mediante

Más detalles

Curso: Inferencia Estadística (ICO 8306) Profesores: Esteban Calvo Ayudantes: José T. Medina DISEÑO DE MUESTREO Y APLICACIONES

Curso: Inferencia Estadística (ICO 8306) Profesores: Esteban Calvo Ayudantes: José T. Medina DISEÑO DE MUESTREO Y APLICACIONES DISEÑO DE MUESTREO Y APLICACIONES MUESTREO ALEATORIO (10 MINUTOS) Como vimos en la primera clase, la estadística que estamos aprendiendo en este curso se basa en hacer inferencias de una muestra para sacar

Más detalles

Tratado de Libre Comercio (TLC) y Política Nacional

Tratado de Libre Comercio (TLC) y Política Nacional PROYECTO: Tratado de Libre Comercio (TLC) y Política Nacional Encuesta Nacional Trimestral / noviembre 2013 1 Con lo que usted sabe cuánto tiempo lleva el Tratado de Libre Comercio entre México, Estados

Más detalles