Virginie saison 8 épisode 3 | Der lange Weg nach Alice Springs (A Town Like Alic | Linda Hart

PRUEBAS PARAMETRICAS Y PRUEBAS NO PARAMETRICAS. Juan José Hernández Ocaña


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PRUEBAS PARAMETRICAS Y PRUEBAS NO PARAMETRICAS. Juan José Hernández Ocaña"

Transcripción

1 PRUEBAS PARAMETRICAS Los métodos paramétricos se basan en el muestreo de una población con parámetros específicos, como la media poblacional, la desviación estándar o la proporción p. Además deben de reunir ciertos requisitos como lo es, que los datos muestrales provengan de una población que se distribuya normalmente. Las pruebas parámetricas se emplean con datos en una escala ordinal, de intervalo o de razón

2 PRUEBAS PARAMETRICAS Y PRUEBAS NO PARAMETRICAS Juan José Hernández Ocaña

3 Pruebas no paramétricas 1.- Los métodos no paramétricos se aplican a una gran variedad de situaciones Cuando empleamos tamaños de muestras muy pequeños Si no sabemos como es la distribución de los datos O ya se realizó un prueba que nos permite saber que los datos no tienen una distribución normal 2.- Sus cálculos son más sencillos y nos permiten una interpretación mas fácil de entender y aplicar, aunque la potencia de las pruebas es menor a las pruebas parámetricas

4 Chi cuadrada 1.- A diferencia de las distribuciones normal y t student, la distribución de ji cuadrada no es simétrica. 2.- Los valores χ 2 son mayores o iguales que cero 3.- El área bajo la curva de χ 2 y sobre el eje horizontal es La forma de una distribución de χ 2 depende de los grados de libertad, por lo cuál hay un número infinito de distribuciones de ji cuadrada.

5 Chi cuadrada Prueba de bondad de ajuste

6 CHI CUADRADA supuestos Los datos se seleccionan aleatoriamente Los datos muestrales consisten en conteos de frecuencias para cada una de las diferentes categorías Para cada categoría, la frecuencia esperada tiene un valor no menor a 5

7 Prueba de Bondad de ajuste La prueba de bondad de ajuste nos permite saber si la distribución muestral sigue la distribución especificada bajo la hipótesis nula El objetivo es determinar si la distribución concuerda con alguna distribución que se asevera en la hipótesis nula Básicamente es establecer una comparación entre la distribución de frecuencias observadas con la de frecuencias esperadas.

8 Prueba de Bondad de ajuste es la frecuencia esperada bajo el supuesto de que se realice un muestreo aleatorio de la población de la hipótesis nula f e f o es la frecuencia observada de la muestra Si la diferencia es pequeña, esto es, que el valor encontrado sea menor al valor crítico, no se rechaza la hipótesis nula. Ello nos indicaría que la diferencia de los valores de la frecuencia esperada y de la frecuencia observada se deben al azar.

9 Xi cuadrada Básicamente se trata de tomar una decisión comparando los valores de las frecuencias que esperaríamos obtener si se realizará un muestreo aleatorio de la población (fe), respecto a los valores que en realidad se obtienen ( fo frecuencia observada) Es razonable pensar que entre más cercano se encuentre el valor de fo al de fe tanto más razonable será pensar que los valores observados son similares a los de la población

10 Calculo de χ 2 X 2 = ( f o - f e ) 2 f e Los grados de libertad son k -1, donde k es el número de grupos Como la dirección de la diferencia no es importante, la prueba de Ji cuadrada es una prueba no direccional ( de dos colas) Básicamente χ 2 es una medida de la diferencia entre las frecuencias observadas y las frecuencias esperadas, por ello mientras mayor sea el valor de χ 2 es más probable rechazar Ho.

11 Criterios Si X 2 obt X 2 cri Rechazo Ho Esto significa que las diferencias entre las frecuencias esperadas y las frecuencias observadas son significativamente grandes y que no se deben al azar Esta prueba es no direccional, la región critica para el rechazo siempre está en la cola derecha de la distribución Chi cuadrada

12 La composición histórica de una población en un ciudad europea es la siguiente: 53% noruegos, 32% suecos, 8% irlandeses, 5% hispanos y 2% italianos. Un científico social realiza un estudio con el fin de comprobar dicha composición. Consideremos que el valor esperado es el teórico o el histórico noruegos suecos Irlandeses hispanos Italianos total F observada F esperada noruegos suecos Irlandeses hispanos Italianos total (750 x 0.53) 240 (750x.32 ) 60 ( 750 x 0.08) 37.5 (750x 0.05) 15 (750x0.02) 750 Para experimentos con una sola variable existen k -1 grados de libertad k ( grupos)

13 De acuerdo a nuestra formula χ 2 = = 62.4 Gl= 5-1 =4 Χ 2 critico= 9.48 Por lo que rechazo H0: la composición étnica parece haber cambiado

14 Ejercicio Un investigador quiere determinar si en verdad existe una opinión mayoritaria en el sentido de que las personas con sobrepeso son más alegres. A una muestra aleatoria de 80 individuos se les preguntó: cree usted que las personas con sobrepeso son más alegres?. Las opciones de respuesta eran: a) sí, b) no Los resultados obtenidos fueron SI 44 No..36 Usando un alfa de 0.05, cuál serían sus conclusiones χ 2 obt es de 0.8 y Ji critica es de No rechazamos Ho, lo que significa que los datos no avalan la opinión inicial

15 Tabla de contingencia

16 Una de las aplicaciones de la Ji cuadrada consiste en determinar si dos variables categóricas son independientes o están relacionadas entre sí Para ello empleamos una tabla de contingencia que muestra la relación contingente entre dos variables, cuando éstas han sido clasificadas en categorías mutuamente excluyentes y cuando se conocen sus frecuencias

17 Pruebas de independencia entre variables Esta prueba nos permite saber si una variable es independiente de otra, esto es, si tienen alguna relación de ciertos atributos en una población. Para su análisis se emplea una tabla de contingencia que se compone de dos o más entradas y muestra la relación contingente entre dos variables, siempre y cuando hayan sido clasificadas en categorías mutuamente excluyentes y los datos en cada celda representan las frecuencias. Hay que considerar que contingencia se refiere a dependencia, pero sólo en el sentido estadístico no es una determinación de causa y efecto

18 Consideraciones Los datos muestrales se seleccionan aleatoriamente La hipótesis nula, es la afirmación de que las variables de renglón y de columna son independientes La hipótesis alternativa es la afirmación de que las variables de renglón y columna son dependientes

19 Consideraciones No se conocen las proporciones reales en la población hay que estimarlas a partir de la muestra Cada una de las observaciones registrada en la tabla de contingencia es independiente de las demás. El tamaño de la muestra deberá ser lo suficientemente grande. La frecuencia esperada en cada celda debe ser por lo menos 5 SÍ la tabla es 1 x 2 o 2 x 2 la frecuencia esperada debe ser por lo menos de 10

20 Consideraciones La hipótesis nula se rechaza si el valor obtenido es igual o mayor al valor critico Ello significa que las diferencias encontradas son debido al muestreo aleatorio Hay que considerar que los grados de libertad se calculan como (r-1) ( c-1), donde r son los renglones y c las columnas en la tabla de contingencia

21 Consideraciones El estadístico de prueba nos permiten medir el grado de discordancia entre las frecuencias que se observan en la realidad y aquellas que se esperarían Los valores pequeños del estadístico de prueba Chi implica una gran concordancia entre las frecuencias que se esperan y las que se observan Valores grandes del estadístico de prueba Chi reflejan diferencias significativas entre las frecuencias que se esperan y las observadas.

22 FRECUENCIA ESPERADA PARA TABLA DE CONTIGENCIA Frecuencia esperada = (total del renglón) ( total de la columna) ( gran total)

23 Ejercicio resuelto Esta Universidad estudia la posibilidad de implantar uno de los tres sistemas de evaluación: E-A; E-B y E-C. Se realiza una encuesta para determinar si existe alguna relación entre el área de licenciatura que estudia cada alumno y la preferencia que manifiesta por algún sistema de evaluación en particular. Se elige una muestra de 200 estudiantes del área de ingeniería; 200 del área de ciencia sociales y 100 del área de administración. Se pregunta a cada lumno que sistema de evaluación prefiere. Con un alfa de 0.05 cuales serían sus conclusiones? Se supone que lo que buscamos es encontrar que existe un relación entre el área de formación y la preferencia del sistema de evaluación Por lo tanto nuestra Ho sería: que el área de estudio y su preferencia por algún sistema de evaluación son independientes entre sí

24 E - A E - B E- C total Administración Sociales Ingeniería total El 14 % ( 70/ 500) del total prefiere el método A El 57% ( 285/ 500) del total prefiere el método B El 29% ( 145/ 500) del total prefiere el método C E - A Administración 26 ( 14) Sociales 24 (28) Ingeniería 20 ( 28) 70 E - B 55 (57) 118 ( 114) 112 (114) 285 E- C 19 (29) (58) ( 58)

25 Estudiantes de UNITEC, están tratando de probar si existe una diferencia entre el nivel de stress mostrado antes de los exámenes por las diferentes áreas de estudio. Para ello somete a alumnos de Ingeniería y de Ciencias Sociales a un test que determina niveles altos o bajos en stress. Si considera un nivel de 0.05 de significancia, cuáles serían sus conclusiones? Nivel de stress Bajo Alto Ingeniería Ciencias Sociales 25 45

26 Nivel de stress Bajo Alto total Ingeniería 15 (12) 15 (18) 30 Ciencias Sociales 25 (28) 45 ( 42) 70 Total Dado que X obt es menor que X cri ( 1.78< 3.84) no se rechaza Ho, y se concluye que el nivel de stress que se presenta ante los exámenes es independiente del área del conocimiento

27 EJERCICIOS

28 EJERCICIO para resolver Un psicólogo social está interesado en determinar si existe alguna relación entre el nivel de educación de los padres y el número de hijos que tienen. Para ello realiza una encuesta y obtiene los siguientes resultados. Si emplea un alfa de 0.05, cuáles serían sus conclusiones? Nivel de educación Dos o menos Mas de dos Universidad Bachillerato TOTAL total

29 Ejercicio clase Cierta compañía manufacturera ha desarrollado un nuevo producto. La compañía ha empleado publicidad a nivel nacional para licitar posibles franquicias. En la compañía se ha dividido al país en diez regiones que son relativamente iguales con respecto al tamaño de la población y posibilidades de ventas de acuerdo a su ingreso económico. Se esperan en cada una los mismos resultados. Los resultados reales se muestran en la tabla siguiente. Si tiene un alfa de 0.05 cual es su conclusión. Formule la hipótesis nula y hipótesis alternativa y cuales son sus conclusiones Región total

30 Un estudio en Estados Unidos sobre los niveles educativos de los votantes y su afiliación política tuvo los siguientes resultados Use un alfa de 0.01 y determine si la afiliación política es independiente del nivel educativo de los votantes Demócrata Republicano Independiente No terminó secundaria Preparatoria completa Licenciatura

31 TAREAS

32 Una compañía está interesada en saber si la preferencia de compra para los viajeros de negocios está en función si éstos viajan al extranjero o en vuelos locales. En una encuesta reciente se les preguntó: durante los últimos 12 meses en sus viajes de negocios, qué tipo de boleto de avión compró con más frecuencia?.las respuestas obtenidas en la siguiente tabla de contingencia Usando un alfa de 0.05, pruebe la independencia del destino del vuelo y tipo de boleto? Cuáles son sus conclusiones? nacional internacional Primera clase Clase de negocios Clase económica

33 La compañía M&M patrocinó una encuesta en la que más de 10 millones personas indicaron su preferencia por los colores de sus chocolates. Los resultados mostraron la siguiente distribución: Café 30%; amarillo 20%; rojo 20%; naranja 10%; verde 10% AZUL 10% De acuerdo a ello se supone que las bolsas de chocolate siguen dicha distribución. Para probarlo la compañía realizo un estudio empleando una muestra de 506 bolsas que revelaron los siguientes resultados: café 177; amarillo 135; rojo 79; naranja 41; verde 36; azul 38 Use un alfa de 0.05 para determinar si estos datos respaldan lo que publicó la empresa

34 Los resultados de un estudio llevado a cabo por el área de mercadotecnia, se les pregunto a hombres y mujeres a qué personas se les dificulta más, comprar regalos Use un alfa de 0.05 y pruebe si hay independencia entre el sexo y la persona más difícil para regalar Persona a la que se le regalará Hombres Mujeres Consorte Padres Hijos 7 19 Hermanos 8 3 Pariente político 4 10 Otros 16 12

35 Ejercicio clase Un año después de los ataques del 11 de septiembre se realizó una encuesta a 2000 estadounidenses donde se les pregunto: asistió usted a la iglesia la semana pasada?. Considerando los resultados obtenidos en una encuesta similar realizada seis meses antes de los ataques, se emplearon los datos obtenidos para averiguar si el sentimiento religioso sufrió alguna modificación un año después de los ataques terroristas. Considerando un alfa de 0.05 y los datos presentados en la tabla siguiente, cuál serían sus conclusiones SI NO Totales 6 meses antes año después

36 Tarea Se taladró un hoyo en un dado y se le rellenó de plomo, luego se procedió a lanzarlo 200 veces. Las siguientes son las frecuencias que se observaron para los resultados de 1,2,3,4,5,6 respectivamente: 27,31,42,40,28 y 32. Si emplea un nivel de significancia de 0.05 para probar la aseveración de que los resultados no son igualmente probables Parece que el dado cargado se comporta de forma diferente a un dado balanceado?

PRUEBA DE HIPÓTESIS CON CHI CUADRADO EMPLEANDO EXCEL Y WINSTATS

PRUEBA DE HIPÓTESIS CON CHI CUADRADO EMPLEANDO EXCEL Y WINSTATS PRUEBA DE HIPÓTESIS CON CHI CUADRADO EMPLEANDO EXCEL Y WINSTATS La finalidad de una prueba de k muestras es evaluar la aseveración que establece que todas las k muestras independientes provienen de poblaciones

Más detalles

ANÁLISIS DE DATOS NO NUMERICOS

ANÁLISIS DE DATOS NO NUMERICOS ANÁLISIS DE DATOS NO NUMERICOS ESCALAS DE MEDIDA CATEGORICAS Jorge Galbiati Riesco Los datos categóricos son datos que provienen de resultados de experimentos en que sus resultados se miden en escalas

Más detalles

7.6 Comparación entre dos medias Poblacionales usando muestras independientes

7.6 Comparación entre dos medias Poblacionales usando muestras independientes 7.6 Comparación entre dos medias Poblacionales usando muestras independientes Supongamos que se tiene dos poblaciones distribuidas normalmente con medias desconocidas µ y µ, respectivamente. Se puede aplicar

Más detalles

DISTRIBUCIÓN NORMAL CON EXCEL Y WINSTATS

DISTRIBUCIÓN NORMAL CON EXCEL Y WINSTATS DISTRIBUCIÓN NORMAL CON EXCEL Y WINSTATS 1) Reseña histórica Abrahan De Moivre (1733) fue el primero en obtener la ecuación matemática de la curva normal. Kart Friedrich Gauss y Márquez De Laplece (principios

Más detalles

PRUEBA DE KOLMOGOROV SMIRNOV (Contraste sobre la forma de la distribución) F(X) es la función de distribución que hipotetizamos.

PRUEBA DE KOLMOGOROV SMIRNOV (Contraste sobre la forma de la distribución) F(X) es la función de distribución que hipotetizamos. PRUEBA DE KOLMOGOROV SMIRNOV (Contraste sobre la forma de la distribución) PRUEBAS NO PARAMÉTRICAS F(X) es la función de distribución que hipotetizamos. Fs(X) es la probabilidad o proporción teórica de

Más detalles

TABLAS DE CONTINGENCIA (CROSS-TAB): BUSCANDO RELACIONES DE DEPENDENCIA ENTRE VARIABLES CATEGÓRICAS 1

TABLAS DE CONTINGENCIA (CROSS-TAB): BUSCANDO RELACIONES DE DEPENDENCIA ENTRE VARIABLES CATEGÓRICAS 1 TABLAS DE CONTINGENCIA (CROSS-TAB): BUSCANDO RELACIONES DE DEPENDENCIA ENTRE VARIABLES CATEGÓRICAS 1 [email protected] El objeto de las tablas de contingencia es extraer información de cruce entre dos

Más detalles

Statgraphics Centurión

Statgraphics Centurión Facultad de Ciencias Económicas y Empresariales. Universidad de Valladolid 1 Statgraphics Centurión I.- Nociones básicas El paquete Statgraphics Centurión es un programa para el análisis estadístico que

Más detalles

ESTIMACION DE INTERVALOS DE CONFIANZA

ESTIMACION DE INTERVALOS DE CONFIANZA pag 3. Prohibida su reproducción ESTIMACION DE INTERVALOS DE CONFIANZA Una muestra permite realizar estimaciones puntuales de los parámetros de la población. Utilizando las propiedades de las distribuciones

Más detalles

EXPERIMENTACIÓN. Eduardo Jiménez Marqués

EXPERIMENTACIÓN. Eduardo Jiménez Marqués EXPERIMENTACIÓN Eduardo Jiménez Marqués 1 CONTENIDO: 1. Experimentación...3 1.1 Concepto...3 1. Definición...4 1.3 Dificultad...4 1.4 Ventaja...5 1.5 Planificación...5 1.6 Aplicaciones...5 1.7 Metodología...6

Más detalles

Problemas de Probabilidad resueltos.

Problemas de Probabilidad resueltos. Problemas de Probabilidad resueltos. Problema 1 El profesor Pérez olvida poner su despertador 3 de cada 10 dias. Además, ha comprobado que uno de cada 10 dias en los que pone el despertador acaba no levandandose

Más detalles

Curso de Estadística no-paramétrica

Curso de Estadística no-paramétrica Curso de Estadística no-paramétrica Sesión 1: Introducción Inferencia no Paramétrica David Conesa Grup d Estadística espacial i Temporal Departament d Estadística en Epidemiologia i Medi Ambient i Investigació

Más detalles

Para que les fuera más cercano y aumentar así su implicación, el tema a tratar fue propuesto por ellos mismos.

Para que les fuera más cercano y aumentar así su implicación, el tema a tratar fue propuesto por ellos mismos. Índice 1. Notas introductorias del profesor.... 2 2. Descripción del proyecto.... 3 2.1. Introducción.... 3 2.2. Objetivos que pretendemos lograr con este trabajo... 3 2.3. El proceso realizado... 4 3.

Más detalles

Tests de hipótesis estadísticas

Tests de hipótesis estadísticas Tests de hipótesis estadísticas Test de hipótesis sobre la media de una población. Introducción con un ejemplo. Los tests de hipótesis estadísticas se emplean para muchos problemas, en particular para

Más detalles

Problemas. Intervalos de Confianza y Contrastes de Hipótesis

Problemas. Intervalos de Confianza y Contrastes de Hipótesis Problemas. Intervalos de Confianza y Contrastes de Hipótesis Ejemplos resueltos y propuestos Intervalos de Confianza Variable Nomal en la población Se selecciona una muestra de tamaño n de una población

Más detalles

PRUEBA ESTADÍSTICA DE HIPÓTESIS

PRUEBA ESTADÍSTICA DE HIPÓTESIS PRUEBA ESTADÍSTICA DE HIPÓTESIS Rodrigo PIMIENTA LASTRA* INTRODUCCIÓN En el presente trabajo se pretende destacar el concepto de hipótesis estadística, así como plantear e identificar tanto la hipótesis

Más detalles

Métodos y Diseños utilizados en Psicología

Métodos y Diseños utilizados en Psicología Métodos y Diseños utilizados en Psicología El presente documento pretende realizar una introducción al método científico utilizado en Psicología para recoger información acerca de situaciones o aspectos

Más detalles

7.- PRUEBA DE HIPOTESIS

7.- PRUEBA DE HIPOTESIS 7.- PRUEBA DE HIPOTEI 7.1. INTRODUCCIÓN La estadística inferencial es el proceso de usar la información de una muestra para describir el estado de una población. in embargo es frecuente que usemos la información

Más detalles

Las técnicas muestrales, los métodos prospectivos y el diseño de estadísticas en desarrollo local

Las técnicas muestrales, los métodos prospectivos y el diseño de estadísticas en desarrollo local 21 Las técnicas muestrales, los métodos prospectivos y el diseño de estadísticas en desarrollo local Victoria Jiménez González Introducción La Estadística es considerada actualmente una herramienta indispensable

Más detalles

CAPITULO III DISEÑO METODOLOGICO. aplicación de campo-experimental, ya que el mismo grupo funcionó como

CAPITULO III DISEÑO METODOLOGICO. aplicación de campo-experimental, ya que el mismo grupo funcionó como 82 CAPITULO III DISEÑO METODOLOGICO 3.1 Tipo de Investigación Tomando en cuenta el tipo de investigación, la naturaleza del programa que se aplicó y considerando el problema estudiado, la investigación

Más detalles

ESTIMACIÓN. puntual y por intervalo

ESTIMACIÓN. puntual y por intervalo ESTIMACIÓN puntual y por intervalo ( ) Podemos conocer el comportamiento del ser humano? Podemos usar la información contenida en la muestra para tratar de adivinar algún aspecto de la población bajo estudio

Más detalles

Clase 8: Distribuciones Muestrales

Clase 8: Distribuciones Muestrales Clase 8: Distribuciones Muestrales Distribución Muestral La inferencia estadística trata básicamente con generalizaciones y predicciones. Por ejemplo, podemos afirmar, con base a opiniones de varias personas

Más detalles

UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA

UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDADES GUÍA N o 1: Estadística y Probabilidades Profesor: Hugo S. Salinas. Primer Semestre 2011 1. Señalar

Más detalles

Experimentos con un solo factor: El análisis de varianza. Jhon Jairo Padilla Aguilar, PhD.

Experimentos con un solo factor: El análisis de varianza. Jhon Jairo Padilla Aguilar, PhD. Experimentos con un solo factor: El análisis de varianza Jhon Jairo Padilla Aguilar, PhD. Experimentación en sistemas aleatorios: Factores Controlables Entradas proceso Salidas Factores No controlables

Más detalles

Solución ESTADÍSTICA. Prueba de evaluación contínua 2 - PEC2

Solución ESTADÍSTICA. Prueba de evaluación contínua 2 - PEC2 Semestre set04 - feb05 Módulos 11-17 Prueba de evaluación contínua 2 - PEC2 Solución Presentación i objetivos Enunciados: descripción teórica de la práctica a realizar Materiales Criterios de evaluación

Más detalles

MÓDULO 9 DISTRIBUCIÓN DE PROBABILIDAD NORMAL

MÓDULO 9 DISTRIBUCIÓN DE PROBABILIDAD NORMAL MÓDULO 9 DISTRIBUCIÓN DE PROBABILIDAD NORMAL INTRODUCCIÓN En este módulo se continúa con el estudio de las distribuciones de probabilidad, examinando una distribución de probabilidad continua muy importante:

Más detalles

8. ANÁLISIS DE DATOS. Dr. Edgar Acuña http://math.uprm.edu/~edgar. Departmento de Matematicas Universidad de Puerto Rico- Mayaguez

8. ANÁLISIS DE DATOS. Dr. Edgar Acuña http://math.uprm.edu/~edgar. Departmento de Matematicas Universidad de Puerto Rico- Mayaguez 8. ANÁLISIS DE DATOS CATEGÓRICOS Dr. http://math.uprm.edu/~edgar Departmento de Matematicas - Mayaguez Introducción Datos categóricos representan atributos o categorías. Cuando se consideran dos variables

Más detalles

Curso Práctico de Bioestadística Con Herramientas De Excel

Curso Práctico de Bioestadística Con Herramientas De Excel Curso Práctico de Bioestadística Con Herramientas De Excel Fabrizio Marcillo Morla MBA [email protected] (593-9) 4194239 Fabrizio Marcillo Morla Guayaquil, 1966. BSc. Acuicultura. (ESPOL 1991). Magister

Más detalles

CAPÍTULO 8 ANÁLISIS DE DATOS CATEGÓRICOS

CAPÍTULO 8 ANÁLISIS DE DATOS CATEGÓRICOS CAPÍTULO 8 ANÁLISIS DE DATOS CATEGÓRICOS En este capítulo se discutiran técnicas estadísticas para anilizar datos categoricos, los cuales representan atributos o categorías. Primero se dicuten la relación

Más detalles

CAPITULO III MARCO METODOLÓGICO 3.1 DISEÑO Y TÉCNICAS DE RECOLECCIÓN DE INFORMACIÓN:

CAPITULO III MARCO METODOLÓGICO 3.1 DISEÑO Y TÉCNICAS DE RECOLECCIÓN DE INFORMACIÓN: CAPITULO III MARCO METODOLÓGICO 3.1 DISEÑO Y TÉCNICAS DE RECOLECCIÓN DE INFORMACIÓN: El modelo de estudio que se utilizó en la investigación es: 3.2.1. DISEÑO CUASI EXPERIMENTAL En los diseños cuasi experimentales

Más detalles

Curso. Análisis Estadístico de Datos Climáticos

Curso. Análisis Estadístico de Datos Climáticos Curso I-1 Análisis Estadístico de Datos Climáticos Distribuciones de Probabilidad Mario Bidegain (FC) Alvaro Diaz (FI) Universidad de la República Montevideo, Uruguay 2011 I-2 DISTRIBUCIONES DE PROBABILIDAD

Más detalles

ANÁLISIS DE VARIANZA EMPLEANDO EXCEL y WINSTATS

ANÁLISIS DE VARIANZA EMPLEANDO EXCEL y WINSTATS ANÁLISIS DE VARIANZA EMPLEANDO EXCEL y WINSTATS 1) INTRODUCCIÓN El análisis de varianza es una técnica que se puede utilizar para decidir si las medias de dos o más poblaciones son iguales. La prueba se

Más detalles

Capítulo 17 Análisis de correlación lineal: Los procedimientos Correlaciones bivariadas y Correlaciones parciales

Capítulo 17 Análisis de correlación lineal: Los procedimientos Correlaciones bivariadas y Correlaciones parciales Capítulo 17 Análisis de correlación lineal: Los procedimientos Correlaciones bivariadas y Correlaciones parciales Cuando se analizan datos, el interés del analista suele centrarse en dos grandes objetivos:

Más detalles

DISTRIBUCIONES DISCRETAS CON EXCEL Y WINSTATS

DISTRIBUCIONES DISCRETAS CON EXCEL Y WINSTATS DISTRIBUCIONES DISCRETAS CON EXCEL Y WINSTATS A) INTRODUCCIÓN Una distribución de probabilidad es una representación de todos los resultados posibles de algún experimento y de la probabilidad relacionada

Más detalles

Indicaciones específicas para los análisis estadísticos.

Indicaciones específicas para los análisis estadísticos. Tutorial básico de PSPP: Vídeo 1: Describe la interfaz del programa, explicando en qué consiste la vista de datos y la vista de variables. Vídeo 2: Muestra cómo crear una base de datos, comenzando por

Más detalles

Curso de Estadística Básica

Curso de Estadística Básica Curso de SESION 1 INTRODUCCIÓN A LA ESTADÍSTICA M. en C. Objetivo Crear una imagen inicial del campo de la estadística así como introducir y comprender los términos básicos aplicados en su estudio. Agenda

Más detalles

PRUEBAS DE HIPÓTESIS

PRUEBAS DE HIPÓTESIS PRUEBAS DE HIPÓTESIS Muchos problemas de ingeniería, ciencia, y administración, requieren que se tome una decisión entre aceptar o rechazar una proposición sobre algún parámetro. Esta proposición recibe

Más detalles

PRUEBAS NO PARAMÉTRICAS

PRUEBAS NO PARAMÉTRICAS PRUEBAS NO PARAMÉTRICAS 1. PRUEBAS DE NORMALIDAD Para evaluar la normalidad de un conjunto de datos tenemos el Test de Kolmogorov- Smirnov y el test de Shapiro-Wilks La opción NNPLOT del SPSS permite la

Más detalles

5.1 PLAN DE TABULACIÓN, ANÁLISIS E INTERPRETACIÓN DE DATOS. Con base a los datos que se obtengan de la muestra, y para responder al

5.1 PLAN DE TABULACIÓN, ANÁLISIS E INTERPRETACIÓN DE DATOS. Con base a los datos que se obtengan de la muestra, y para responder al 47 5.1 PLAN DE TABULACIÓN, ANÁLISIS E INTERPRETACIÓN DE DATOS PARA PRUEBA DE HIPÓTESIS. Con base a los datos que se obtengan de la muestra, y para responder al problema y objetivos planteados, deberán

Más detalles

Tema 3. Comparaciones de dos poblaciones

Tema 3. Comparaciones de dos poblaciones Tema 3. Comparaciones de dos poblaciones Contenidos Hipótesis para la diferencia entre las medias de dos poblaciones: muestras pareadas Hipótesis para la diferencia entre las medias de dos poblaciones:

Más detalles

Clase 4: Probabilidades de un evento

Clase 4: Probabilidades de un evento Clase 4: Probabilidades de un evento Definiciones A continuación vamos a considerar sólo aquellos experimentos para los que el EM contiene un número finito de elementos. La probabilidad de la ocurrencia

Más detalles

ANÁLISIS ESTADÍSTICO Calculadora Gráfica TI 83 Plus José Carlos Vega Vilca, Ph.D.

ANÁLISIS ESTADÍSTICO Calculadora Gráfica TI 83 Plus José Carlos Vega Vilca, Ph.D. UNIVERSIDAD DE PUERTO RICO FACULTAD DE ADMINISTRACION DE EMPRESAS INSTITUTO DE ESTADISTICA ANÁLISIS ESTADÍSTICO Calculadora Gráfica TI 83 Plus, Ph.D. Presentación Este curso ofrece al estudiante, la posibilidad

Más detalles

Diseño de un estudio de investigación de mercados

Diseño de un estudio de investigación de mercados Diseño de un estudio de investigación de mercados En cualquier diseño de un proyecto de investigación de mercados, es necesario especificar varios elementos como las fuentes a utilizar, la metodología,

Más detalles

3. ANÁLISIS ESTADÍSTICOS DE LAS PRECIPITACIONES EN EL MAR CASPIO

3. ANÁLISIS ESTADÍSTICOS DE LAS PRECIPITACIONES EN EL MAR CASPIO Análisis estadístico 31 3. ANÁLII ETADÍTICO DE LA PRECIPITACIONE EN EL MAR CAPIO 3.1. ANÁLII Y MÉTODO ETADÍTICO UTILIZADO 3.1.1. Introducción Una vez analizado el balance de masas que afecta al mar Caspio

Más detalles

DIPLOMADO EN RELACIONES LABORALES Estadística Asistida por Ordenador Curso 2008-2009

DIPLOMADO EN RELACIONES LABORALES Estadística Asistida por Ordenador Curso 2008-2009 Índice general 6. Regresión Múltiple 3 6.1. Descomposición de la variabilidad y contrastes de hipótesis................. 4 6.2. Coeficiente de determinación.................................. 5 6.3. Hipótesis

Más detalles

(.$263*7.5"4+%#,"8..9$ $.$ - -. 7.# "4< $ 8 $ 7 "% @

(.$263*7.54+%#,8..9$ $.$ - -. 7.# 4< $ 8 $ 7 % @ !"#$%!& ' ($ 2 ))!"#$%& '$()!& *($$+%( & * $!" "!,"($"$ -(.$!- ""& +%./$$&,-,$,". - %#,"0# $!01 "23(.4 $4$"" ($" $ -.#!/ ". " " ($ "$%$(.$2.3!- - *.5.+%$!"$,"$ (.$263*7.5"4+%#,"8..9$ $.$ - $,"768$"%$,"$%$!":7#;

Más detalles

Cómo aplicar las pruebas paramétricas bivariadas t de Student y ANOVA en SPSS. Caso práctico.

Cómo aplicar las pruebas paramétricas bivariadas t de Student y ANOVA en SPSS. Caso práctico. Universitat de de Barcelona. Institut de de Ciències de de l Educació Cómo aplicar las pruebas paramétricas bivariadas t de Student y ANOVA en SPSS. Caso práctico. María José Rubio

Más detalles

Unidad 6. Distribuciones de probabilidad continua, muestreo y distribución de muestras

Unidad 6. Distribuciones de probabilidad continua, muestreo y distribución de muestras Unidad 6 Distribuciones de probabilidad continua, muestreo y distribución de muestras Introducción La unidad 5 se enfocó en el estudio de las distribuciones de probabilidad discreta, entre las cuales

Más detalles

UN PRIMER ACERCAMIENTO A LOS FACTORES QUE AFECTAN EL DESEMPEÑO DE LOS ALUMNOS QUE INGRESAN A UNA ESCUELA DE CIENCIAS

UN PRIMER ACERCAMIENTO A LOS FACTORES QUE AFECTAN EL DESEMPEÑO DE LOS ALUMNOS QUE INGRESAN A UNA ESCUELA DE CIENCIAS UN PRIMER ACERCAMIENTO A LOS FACTORES QUE AFECTAN EL DESEMPEÑO DE LOS ALUMNOS QUE INGRESAN A UNA ESCUELA DE CIENCIAS GUADALUPE YOANNA ARENAS; HORTENSIA REYES; MANUEL IBARRA; HUGO CRUZ; FLAVIANO GODÍNEZ,

Más detalles

CAPITULO V ANÁLISIS E INTERPRETACIÓN DE RESULTADOS

CAPITULO V ANÁLISIS E INTERPRETACIÓN DE RESULTADOS 60 CAPITULO V ANÁLISIS E INTERPRETACIÓN DE RESULTADOS En este capitulo se describe el análisis de los resultados encontrados mediante la aplicación del instrumento; el cual se describe en tres partes:

Más detalles

Matemáticas 2º BTO Aplicadas a las Ciencias Sociales

Matemáticas 2º BTO Aplicadas a las Ciencias Sociales Matemáticas 2º BTO Aplicadas a las Ciencias Sociales CONVOCATORIA EXTRAORDINARIA DE JUNIO 2014 MÍNIMOS: No son contenidos mínimos los señalados como de ampliación. I. PROBABILIDAD Y ESTADÍSTICA UNIDAD

Más detalles

Comparación de proporciones

Comparación de proporciones 11 Comparación de proporciones Neus Canal Díaz 11.1. Introducción En la investigación biomédica se encuentran con frecuencia datos o variables de tipo cualitativo (nominal u ordinal), mediante las cuales

Más detalles

TEMA 5 VALIDEZ DE LA INVESTIGACIÓN (II): Validez de conclusión estadística

TEMA 5 VALIDEZ DE LA INVESTIGACIÓN (II): Validez de conclusión estadística TEMA 5 VALIDEZ DE LA INVESTIGACIÓN (II): Validez de conclusión estadística 1 TAMAÑO DEL EFECTO 2 TAMAÑO DEL EFECTO vel tamaño del efecto es el nombre dado a una familia de índices que miden la magnitud

Más detalles

SESIÓN PRÁCTICA 6: CONTRASTES DE HIPÓTESIS PROBABILIDAD Y ESTADÍSTICA. PROF. Esther González Sánchez. Departamento de Informática y Sistemas

SESIÓN PRÁCTICA 6: CONTRASTES DE HIPÓTESIS PROBABILIDAD Y ESTADÍSTICA. PROF. Esther González Sánchez. Departamento de Informática y Sistemas SESIÓN PRÁCTICA 6: CONTRASTES DE HIPÓTESIS PROBABILIDAD Y ESTADÍSTICA PROF. Esther González Sánchez Departamento de Informática y Sistemas Facultad de Informática Universidad de Las Palmas de Gran Canaria

Más detalles

ESCALAS DE MEDICIÓN ...

ESCALAS DE MEDICIÓN ... ESCALAS DE MEDICIÓN... Como la estadística analiza los datos y éstos son el resultado de las mediciones, necesitamos ocupar cierto tiempo para estudiar las escalas de medición. Este tema es de suma importancia,

Más detalles

ESTADISTICA GENERAL INTRODUCCIÓN CONCEPTOS BASICOS ORGANIZACIÓN DE DE DATOS

ESTADISTICA GENERAL INTRODUCCIÓN CONCEPTOS BASICOS ORGANIZACIÓN DE DE DATOS ESTADISTICA GENERAL INTRODUCCIÓN CONCEPTOS BASICOS ORGANIZACIÓN DE DE DATOS Profesor del del curso: curso: Ing. Ing. Celso Celso Gonzales INTRODUCCION OBJETIVOS Comprender qué es y porqué se estudia la

Más detalles

Fundamentos de Biología Aplicada I Estadística Curso 2011-2012 Práctica 6: Regresión Logística I

Fundamentos de Biología Aplicada I Estadística Curso 2011-2012 Práctica 6: Regresión Logística I Fundamentos de Biología Aplicada I Estadística Curso 2011-2012 Índice 1. Objetivos de la práctica 2 2. Estimación de un modelo de regresión logística con SPSS 2 2.1. Ajuste de un modelo de regresión logística.............................

Más detalles

T. 5 Inferencia estadística acerca de la relación entre variables

T. 5 Inferencia estadística acerca de la relación entre variables T. 5 Inferencia estadística acerca de la relación entre variables 1. El caso de dos variables categóricas 2. El caso de una variable categórica y una variable cuantitativa 3. El caso de dos variables cuantitativas

Más detalles

INVESTIGACIÓN DE MERCADOS

INVESTIGACIÓN DE MERCADOS INVESTIGACIÓN DE MERCADOS UDELAR RRII 2011 LIC. (MAG) IGNACIO BARTESAGHI INVESTIGACIÓN DE MERCADO (1) Definición de Schoell y Guiltinan: La investigación de mercados es la función que enlaza al consumidor,

Más detalles

Inferencia Estadística

Inferencia Estadística Felipe José Bravo Márquez 11 de noviembre de 2013 Para realizar conclusiones sobre una población, generalmente no es factible reunir todos los datos de ésta. Debemos realizar conclusiones razonables respecto

Más detalles

Detergente Lavad.1 Lavad.2 Lavad.3 Media A 45 43 51 46.3 B 47 44 52 47.6 C 50 49 57 52 D 42 37 49 42.6. Media 46 43.2 52.2 47.16

Detergente Lavad.1 Lavad.2 Lavad.3 Media A 45 43 51 46.3 B 47 44 52 47.6 C 50 49 57 52 D 42 37 49 42.6. Media 46 43.2 52.2 47.16 3. DISEÑO EN BLOQUES ALEATORIZADOS En muchos experimentos además de que interesa investigar la influencia de un factor controlado sobre la variable de respuesta, como en la sección anterior, existe una

Más detalles

10. DISEÑOS EXPERIMENTALES

10. DISEÑOS EXPERIMENTALES 10. DISEÑOS EXPERIMENTALES Dr. Edgar Acuña http://math.uprm.edu/~edgar UNIVERSIDAD DE PUERTO RICO RECINTO UNIVERSITARIO DE MAYAGUEZ Diseños Experimentales de Clasificación Simple En un diseño experimental

Más detalles

VICERRECTORADO DE CALIDAD E INNOVACIÓN EDUCATIVA

VICERRECTORADO DE CALIDAD E INNOVACIÓN EDUCATIVA VICERRECTORADO DE CALIDAD E INNOVACIÓN EDUCATIVA Título del Informe: Análisis de validez y fiabilidad del cuestionario de encuesta a los estudiantes para la evaluación de la calidad de la docencia Fecha:

Más detalles

Pruebas de Hipótesis de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Pruebas de Hipótesis de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Pruebas de ipótesis de Una y Dos Muestras UCR ECCI CI-35 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides ipótesis Estadísticas Conceptos Generales En algunos casos el científico

Más detalles

TRATAMIENTO DE BASES DE DATOS CON INFORMACIÓN FALTANTE SEGÚN ANÁLISIS DE LAS PÉRDIDAS CON SPSS

TRATAMIENTO DE BASES DE DATOS CON INFORMACIÓN FALTANTE SEGÚN ANÁLISIS DE LAS PÉRDIDAS CON SPSS Badler, Clara E. Alsina, Sara M. 1 Puigsubirá, Cristina B. 1 Vitelleschi, María S. 1 Instituto de Investigaciones Teóricas y Aplicadas de la Escuela de Estadística (IITAE) TRATAMIENTO DE BASES DE DATOS

Más detalles

CAPITULO V INTERPRETACIÓN Y ANÁLISIS DE RESULTADOS 5.1. ÍNDICES DE VIOLENCIA ENCONTRADOS

CAPITULO V INTERPRETACIÓN Y ANÁLISIS DE RESULTADOS 5.1. ÍNDICES DE VIOLENCIA ENCONTRADOS CAPITULO V INTERPRETACIÓN Y ANÁLISIS DE RESULTADOS.. ÍNDICES DE VIOLENCIA ENCONTRADOS Del total de sujetos de la muestra que son, en los cuales mujeres y hombres se obtuvo lo siguientes resultados: - El

Más detalles

ANÁLISIS DE LA VARIANZA (ANOVA) José Vicéns Otero Ainhoa Herrarte Sánchez Eva Medina Moral

ANÁLISIS DE LA VARIANZA (ANOVA) José Vicéns Otero Ainhoa Herrarte Sánchez Eva Medina Moral ANÁLISIS DE LA VARIANZA (ANOVA) José Vicéns Otero Ainhoa Herrarte Sánchez Eva Medina Moral Enero 2005 1.- INTRODUCCIÓN En múltiples ocasiones el analista o investigador se enfrenta al problema de determinar

Más detalles

MANUAL SIMPLIFICADO DE ESTADÍSTICA APLICADA VIA SPSS

MANUAL SIMPLIFICADO DE ESTADÍSTICA APLICADA VIA SPSS 1 MANUAL SIMPLIFICADO DE ESTADÍSTICA APLICADA VIA SPSS Medidas de tendencia central Menú Analizar: Los comandos del menú Analizar (Estadística) ejecutan los procesamientos estadísticos. Sus comandos están

Más detalles

Inferencia Estadística

Inferencia Estadística MaMaEuSch Management Mathematics for European Schools http://www.mathematik.unikl.de/ mamaeusch Inferencia Estadística Paula Lagares Barreiro * Justo Puerto Albandoz * MaMaEuSch ** Management Mathematics

Más detalles

UNIVERSIDAD CARLOS III DE MADRID MASTER EN CALIDAD TOTAL MANUAL DE SPSS

UNIVERSIDAD CARLOS III DE MADRID MASTER EN CALIDAD TOTAL MANUAL DE SPSS UNIVERSIDAD CARLOS III DE MADRID MASTER EN CALIDAD TOTAL MANUAL DE SPSS I. INTRODUCCIÓN Y MANEJO DE DATOS MANUAL DE SPSS 1 MASTER CALIDAD TOTAL 1/ INTRODUCCIÓN Las aplicaciones de la Estadística en la

Más detalles

FACULTAD DE ENFERMERIA MAESTRÌA EN ENFERMERIA PROGRAMA DEL CURSO ESTADÌSTICA AVANZADA CODIGO MC1114 REQUISITOS EG2113 CREDITO: 4

FACULTAD DE ENFERMERIA MAESTRÌA EN ENFERMERIA PROGRAMA DEL CURSO ESTADÌSTICA AVANZADA CODIGO MC1114 REQUISITOS EG2113 CREDITO: 4 FACULTAD DE ENFERMERIA MAESTRÌA EN ENFERMERIA PROGRAMA DEL CURSO ESTADÌSTICA AVANZADA CODIGO MC1114 REQUISITOS EG2113 CREDITO: 4 REQUISITO LICENCIATURA EN ENFERMERÌA PROFESOR 1. Justificación. Se requiere

Más detalles

MUESTREO TIPOS DE MUESTREO

MUESTREO TIPOS DE MUESTREO MUESTREO En ocasiones en que no es posible o conveniente realizar un censo (analizar a todos los elementos de una población), se selecciona una muestra, entendiendo por tal una parte representativa de

Más detalles

Estadística 2º curso del Grado en Ciencias de la Actividad Física y el Deporte. ---o0o--- Concepto General de Test de Hipótesis

Estadística 2º curso del Grado en Ciencias de la Actividad Física y el Deporte. ---o0o--- Concepto General de Test de Hipótesis Pedro Femia Marzo, Mª Teresa Miranda León, José A Roldán Nofuentes, Inmaculada Roldán López Hierro Estadística 2º curso l Grado en Ciencias la Actividad Física y el Deporte ---oo--- Concepto General Test

Más detalles

FACULTAD DE INGENIERÍA INDUSTRIAL Y DE SISTEMAS SÍLABO 2013-II

FACULTAD DE INGENIERÍA INDUSTRIAL Y DE SISTEMAS SÍLABO 2013-II FACULTAD DE INGENIERÍA INDUSTRIAL Y DE SISTEMAS SÍLABO 2013-II Asignatura: Código: ESTADÍSTICA II 1. DATOS GENERALES 1.1. Departamento Académico Ingeniería Industrial 1.2. Escuela profesional Ingeniería

Más detalles

DISTRIBUCIONES DE VARIABLE CONTINUA

DISTRIBUCIONES DE VARIABLE CONTINUA UNIDAD 11 DISTRIBUCIONES DE VARIABLE CONTINUA Página 260 1. Los trenes de una cierta línea de cercanías pasan cada 20 minutos. Cuando llegamos a la estación, ignoramos cuándo pasó el último. La medida

Más detalles

PRESENTACIÓN, DISCUSIÓN Y ANALISIS DE LOS RESULTADOS

PRESENTACIÓN, DISCUSIÓN Y ANALISIS DE LOS RESULTADOS UNIVERSIDAD DE LOS ANDES FACULTAD DE ODONTOLOGIA MERIDA EDO. MERIDA PRESENTACIÓN, DISCUSIÓN Y ANALISIS DE LOS RESULTADOS Mérida, Febrero 2010. Integrantes: Maria A. Lanzellotti L. Daniela Paz U. Mariana

Más detalles

ESTUDIO SOBRE USO DE TEXTOS ESCOLARES EN ENSEÑANZA MEDIA RESUMEN EJECUTIVO

ESTUDIO SOBRE USO DE TEXTOS ESCOLARES EN ENSEÑANZA MEDIA RESUMEN EJECUTIVO Ministerio de Educación Equipo de Seguimiento a la Implementación Curricular Unidad de Currículum y Evaluación ESTUDIO SOBRE USO DE TEXTOS ESCOLARES EN ENSEÑANZA MEDIA RESUMEN EJECUTIVO En septiembre de

Más detalles

Análisis de la Varianza de un Factor

Análisis de la Varianza de un Factor Práctica de Estadística con Statgraphics Análisis de la Varianza de un Factor Fundamentos teóricos El Análisis de la Varianza con un Factor es una técnica estadística de contraste de hipótesis, cuyo propósito

Más detalles

Test de hipótesis. Si H0 es cierta el estadístico. sigue una distribución t de Student con n grados de libertad: s n

Test de hipótesis. Si H0 es cierta el estadístico. sigue una distribución t de Student con n grados de libertad: s n Un diseño experimental que se utiliza muy a menudo es el de un grupo control y uno de tratamiento. En el caso de que los datos sean cuantitativos y sigan una distribución normal, la hipótesis de interés

Más detalles

Análisis de la Varianza (ANOVA) de un factor y test a posteriori.

Análisis de la Varianza (ANOVA) de un factor y test a posteriori. Análisis de la Varianza (ANOVA) de un factor y test a posteriori. Ejercicios Temas 8 y 9 (Resuelto) 1. Problema 5 Se quiere estudiar el efecto de distintas dosis de un medicamento para combatir a los parásitos

Más detalles

RELACIÓN EJERCICIOS DEL CAPÍTULO 1. Intervalos de Confianza 1. La vida media de una muestra aleatoria de 10 focos es de 4.

RELACIÓN EJERCICIOS DEL CAPÍTULO 1. Intervalos de Confianza 1. La vida media de una muestra aleatoria de 10 focos es de 4. RELACIÓN EJERCICIOS DEL CAPÍTULO 1. Intervalos de Confianza 1. La vida media de una muestra aleatoria de 10 focos es de 4.000 horas, con una cuasidesviación típica muestral de 200 horas. Se supone que

Más detalles

PRÁCTICA 4. Ingeniería Técnica Industrial (2º) - Mecánica.

PRÁCTICA 4. Ingeniería Técnica Industrial (2º) - Mecánica. PRÁCTICA 4. Ingeniería Técnica Industrial (2º) - Mecánica. Profesores: Javier Faulín y Francisco Ballestín 1. Introducción. El objetivo de esta parte es obtener resultados sobre contrastes de hipótesis

Más detalles

INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA

INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 1 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA Página 75 REFLEXIONA Y RESUELVE Lanzamiento de varios dados Comprueba en la tabla anterior ue: DESV. TÍPICA PARA n DADOS n = 8 1,71 1,1 n = 3 8 1,71 3 0,98

Más detalles

Análisis técnico de una acción: Rentabilidad, riesgo y correlación

Análisis técnico de una acción: Rentabilidad, riesgo y correlación CONFORMACION DE PORTAFOLIO DE ACCIONES (Aplicación) GUIA DE APLICACIÓN No. 1 Análisis técnico de una acción: Rentabilidad, riesgo y correlación INTRODUCCION: Una bolsa de valores es un mercado donde se

Más detalles

MANUAL PARA EL USO DE SPSS

MANUAL PARA EL USO DE SPSS MANUAL PARA EL USO DE SPSS 1 INTRODUCCIÓN El propósito de este manual, es ilustrar con un ejemplo cómo generar tablas de frecuencia, tablas de contingencia, cálculos de medias, así como la generación de

Más detalles

Capítulo 3 Marco Metodológico.

Capítulo 3 Marco Metodológico. Capítulo 3 Marco Metodológico. 3.0 METODOLOGÍA DE LA INVESTIGACIÓN 3.1 FORMULACIÓN DE HIPÓTESIS DE TRABAJO 3.1.1 Hipótesis General HG. La creación de un plan estratégico permite mejorar el uso de los servicios

Más detalles

Análisis de tablas de contingencia bidimensionales. Ana María Aguilera del Pino

Análisis de tablas de contingencia bidimensionales. Ana María Aguilera del Pino Análisis de tablas de contingencia bidimensionales Ana María Aguilera del Pino Abril, 2005 Índice 1 Variables Cualitativas....................... 1 1.1 Clasificación de variables cualitativas..........

Más detalles

Las Matemáticas En Ingeniería

Las Matemáticas En Ingeniería Las Matemáticas En Ingeniería 1.1. Referentes Nacionales A nivel nacional se considera que el conocimiento matemático y de ciencias naturales, sus conceptos y estructuras, constituyen una herramienta para

Más detalles

Capítulo 12. Análisis de variables categóricas: El procedimiento Tablas de contingencia. Tablas de contingencia

Capítulo 12. Análisis de variables categóricas: El procedimiento Tablas de contingencia. Tablas de contingencia Capítulo 12 Análisis de variables categóricas: El procedimiento Tablas de contingencia En las ciencias sociales, de la salud y del comportamiento es muy frecuente encontrarse con variables categóricas.

Más detalles

Muestreo estadístico. Relación 2 Curso 2007-2008

Muestreo estadístico. Relación 2 Curso 2007-2008 Muestreo estadístico. Relación 2 Curso 2007-2008 1. Para tomar la decisión de mantener un determinado libro como texto oficial de una asignatura, se pretende tomar una muestra aleatoria simple entre los

Más detalles

Tema 3 Probabilidades

Tema 3 Probabilidades Probabilidades 1 Introducción Tal vez estemos acostumbrados con algunas ideas de probabilidad, ya que esta forma parte de la cultura cotidiana. Con frecuencia escuchamos a personas que hacen afirmaciones

Más detalles

SPSS: ANOVA de un Factor

SPSS: ANOVA de un Factor SPSS: ANOVA de un Factor El análisis de varianza (ANOVA) de un factor nos sirve para comparar varios grupos en una variable cuantitativa. Esta prueba es una generalización del contraste de igualdad de

Más detalles

Inferencia Estadística

Inferencia Estadística EYP14 Estadística para Construcción Civil 1 Inferencia Estadística El campo de la inferencia estadística está formado por los métodos utilizados para tomar decisiones o para obtener conclusiones sobre

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 003 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Junio, Ejercicio 3, Opción A Junio, Ejercicio 3, Opción B Reserva 1, Ejercicio 3,

Más detalles

Análisis estadístico. Tema 1 de Biología NS Diploma BI Curso 2013-2015

Análisis estadístico. Tema 1 de Biología NS Diploma BI Curso 2013-2015 Análisis estadístico Tema 1 de Biología NS Diploma BI Curso 2013-2015 Antes de comenzar Sobre qué crees que trata esta unidad? - Escríbelo es un post-it amarillo. Pregunta guía Cómo podemos saber si dos

Más detalles

Haciendo estadística con SPAC-FL y Minitab

Haciendo estadística con SPAC-FL y Minitab Haciendo estadística con SPAC-FL y Minitab Mayo de 2011 Ing. Fernando Tomati Director de Contenidos HLTnetwork S.A. www.hltnetwork.com 1 de 12 HACIENDO ESTADÍSTICA CON SPAC-FL Y MINITAB El uso de las estadísticas

Más detalles

Prueba de Software de Conteo Celular

Prueba de Software de Conteo Celular Prueba de Software de Conteo Celular Act. Guadalupe Siordia Montero Universidad Autónoma de Yucatán 25 de Octubre del 2006 Índice 1. Antecedentes 2 2. Planteamiento del problema 4 2.1. Objetivo del trabajo............................

Más detalles

Embargado hasta : 27 de septiembre de 2013-3:01 p.m. EDT / 2:01 p.m. CDT

Embargado hasta : 27 de septiembre de 2013-3:01 p.m. EDT / 2:01 p.m. CDT Embargado hasta : 27 de septiembre de 2013-3:01 p.m. EDT / 2:01 p.m. CDT Para mayor información póngase en contacto con : Public Religion Research Institute: Tom Fazzini, [email protected], (202)

Más detalles

Tema 8. Poblaciones y muestras

Tema 8. Poblaciones y muestras Curso de Estadística Aplicada a las Ciencias Sociales Poblaciones y muestras Fuentes: Manual (tema 19) y Agresti (cap. 2). Poblaciones y muestras Introducción Poblaciones y muestras Tipos de muestras Azar

Más detalles

TEMA 4: Introducción al Control Estadístico de Procesos

TEMA 4: Introducción al Control Estadístico de Procesos TEMA 4: Introducción al Control Estadístico de Procesos 1 Introducción 2 Base estadística del diagrama de control 3 Muestreo y agrupación de datos 4 Análisis de patrones en diagramas de control 1. Introducción

Más detalles

ANÁLISIS Y PROPUESTA PARA LA ENSEÑANZA DE LA COMPUTACIÓN A LOS ESTUDIANTES DE NIVEL MEDIO DE LOS COLEGIOS FISCALES DE GUAYAQUIL

ANÁLISIS Y PROPUESTA PARA LA ENSEÑANZA DE LA COMPUTACIÓN A LOS ESTUDIANTES DE NIVEL MEDIO DE LOS COLEGIOS FISCALES DE GUAYAQUIL ANÁLISIS Y PROPUESTA PARA LA ENSEÑANZA DE LA COMPUTACIÓN A LOS ESTUDIANTES DE NIVEL MEDIO DE LOS COLEGIOS FISCALES DE GUAYAQUIL Hugo Renán Ruíz 1, Luis Rodríguez Ojeda 1 Ingeniero en Estadística Informática

Más detalles