Eps13 Still the King - Season 2 (2017) | Eps1 Strange Angel - Season 1 | 5.6 01 h 36 minDeath Race 2

(b) v constante, por lo que la bola posee una aceleración normal hacia el centro de curvatura.


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "(b) v constante, por lo que la bola posee una aceleración normal hacia el centro de curvatura."

Transcripción

1 Cuestiones 1. Una bola pequeña rueda en el interior de un recipiente cónico de eje vertical y semiángulo α en el vértice A qué altura h sobre el vértice se encontrará la bolita en órbita estable con una velocidad de v? La situación es el que se muestra en la figura 1. Sobre la bola las únicas fuerzas que actúan son el peso, en N dirección vertical y hacia abajo, y la normal que realiza la superficie del cono sobre la bola, perpendicular a la R superficie del cono y formando un ángulo α con el plano P horizontal. v Se toma el eje x en la dirección horizontal hacia el α h centro de curvatura (plano horizontal), y el eje y en α h la dirección vertical (figura 1b). La bola da vueltas a una altura h respecto del vértice del cono, estacionaria, y por lo que ni sube ni baja, y la aceleración en el eje y es igual a cero. Por otro lado, en el plano horizontal está describiendo una circunferencia con velocidad (a) x (b) v constante, por lo que la bola posee una aceleración normal hacia el centro de curvatura. Figura 1: Cuestión 1 Teniendo en cuenta las anteriores fuerzas, la segunda ley de Newton queda: { dirección x N cos α = m v 2 Σ F = P + N = m a R dirección y Nsenα mg = 0 De la segunda ecuación se obtiene el valor del módulo de la normal, que resulta: N = mg senα Por otro lado, el radio de curvatura de la circunferencia que describe la bola depende de la altura a la que gira, tal que tan α = R h por lo que R = h tan α Sustituyendo las anteriores dos expresión de R y N en el equilibrio de fuerzas en la dirección x resulta: mg cos α senα = m v2 h tan α y simplificando se obtiene la expresión que se pide de la altura en función de la velocidad h = v2 g 2. Una bola de billar choca con otra que inicialmente está en reposo. Determínese la relación que deben cumplir las masas de ambas bolas para que la primera quede en reposo después del choque, en el caso de que el choque sea elástico y en el caso de que sea inelástico. Tanto si es elástico como si no, la interacción entre las dos bolas de billar es un choque instantáneo, en el que no existe ninguna fuerza impulsiva en la dirección horizontal, por lo 1

2 que el momento lineal total del sistema en esta dirección se conserva. Si se supone el choque unidimensional, p 10 y p 20 son el momento de la bola uno y la dos antes del choque, y p 1f y p 2f son el momento de la bola uno y la dos después del choque, la conservación del momento lineal queda: p 10 + p 20 = p 1f + p 2f Inicialmente, la bola 2 se encuentra en reposo, por lo que p 20 = 0; mientras que tras el choque es la bola 1 la que queda en reposo, es decir p 1f = 0. Si se tiene en cuenta estas dos condiciones, la definición del momento lineal ( p = m v) y se nota con m 1 y m 2 las masas de la bola uno y la bola dos, la anterior ecuación de conservación resulta: m 1 v 10 = m 2 v 2f (1) Esta ecuación se cumplirá tanto en el caso de choque elástico como inelástico. Vamos a estudiar estos dos casos por separado. Choque elástico En este caso, se tiene que la energía antes y después del choque es la misma. Las energías antes (E o ) y después del choque (E f ) son: E o = 1 2 m 1v 2 1o y E f = 1 2 m 2v 2 2f La igualdad de estas dos energías produce 1 2 m 1v 2 10 = 1 2 m 2v 2 2f = m 1 v 2 10 = m 2 v 2 2f = (m 2 v 2f )v 2f Pero también debe cumplirse la ecuación (1), que sustituyendo en la anterior ecuación produce: m 1 v 2 10 = (m 1 v 10 )v 2f = v 10 = v 2f Si esto se sustituye en la ecuación (1), resulta: m 1 = m 2 Choque inelástico En este caso se pierde energía en el choque, por lo que se cumple: E o > E f = 1 2 mv2 1o > 1 2 mv2 2f = m 1 v 2 1o > m 2 v 2 2f = (m 2 v 2f )v 2f Al igual que en el anterior caso, también debe cumplirse la ecuación (1), que sustituyéndola en la anterior ecuación produce: m 1 v 2 10 > (m 1 v 10 )v 2f = v 1o > v 2f Si esto se substituye en la ecuación (1) resulta: m 1 < m 2 2

3 Problemas 1. El parabrisas de un coche forma un ángulo de 60 o con la horizontal. Cuando el coche acelera uniformemente, se coloca suavemente un paquete sobre él de 2 kg. Calcular el rango de aceleraciones que puede llevar el coche para que el paquete permanezca en reposo respecto del parabrisas si el coeficiente de rozamiento estático entre el parabrisas y el paquete es de 0.3. Cuando la aceleración del coche sea muy grande, el paquete se desplazará hacia arriba del parabrisas, a lo que se opondrá una fuerza de rozamiento hacia abajo. Sin embargo, cuando la aceleración sea muy pequeña, el paquete tenderá a desplazarse hacia abajo del parabrisas, a lo que se opondrá una fuerza de rozamiento hacia arriba. Por tanto, existen dos situaciones límite: una en la que está apunto de irse hacia arriba (figura 2(a)), y otra la que está a punto de irse hacia abajo (figura 2(b)). a 60º P y N F r x a 60º F r y P N x (a) (b) Figura 2: Problema 1 Hagamos primero el caso en el que está a punto de irse hacia arriba. En este caso, si se aplica la segunda ley de Newton, teniendo en cuenta la geometría presente en la figura 2(a) se tiene: { ΣF = P + N + F dirección y N cos α mg Fr senα = 0 r = m a dirección x Nsenα + F r cos α = ma donde α = 60 o. Como ésta es una situación límite F r = µ e N, con lo que las anteriores ecuaciones quedan: { N cos α mg Nµe senα = 0 Nsenα + Nµ e cos α = ma De la primera resulta el módulo de la normal: N = mg cos α µ e senα Sustituyendo este valor en la segunda se llega a la expresión de la aceleración: a = g senα + µ e cos α cos α µ e senα = 41,45 m/s2 Cualquier aceleración mayor que ésta hará que el paquete se desplace hacia arriba del parabrisas. El caso en el que la aceleración es tan pequeña que está apunto de desplazarse hacia abajo del parabrisas está esquematizado en la figura 2(b). En este caso la segunda ley de Newton quedaría: { ΣF = P + N + F dirección y N cos α mg + Fr senα = 0 r = m a dirección x Nsenα F r cos α = ma 3

4 Al igual que antes, ésta es una situación límite, por lo que F r = µ e N y las anteriores ecuaciones quedan: { N cos α mg + Nµe senα = 0 Nsenα Nµ e cos α = ma De la primera resulta el módulo de la normal: mg N = cos α + µ e senα Sustituyendo este valor en la segunda se llega a la expresión de la aceleración: a = g senα µ e cos α cos α + µ e senα = 9,23 m/s2 Cualquier aceleración menor que ésta hará que el paquete se desplace hacia abajo del parabrisas. Por tanto, los valores de la aceleración para los cuales el paquete no desliza en el parabrisas son: 9,23 m/s 2 a 41,45 m/s 2 2. Una bala de 7 g es disparada con un arma de fuego contra un bloque de madera de masa 1 kg apoyado sobre el suelo y en contacto con una pared vertical; la bala penetra en el bloque de madera hasta una profundidad de 8 cm. Ahora se coloca el bloque de madera sobre una superficie horizontal sin rozamiento y se dispara con el arma otra bala de 7 g contra el bloque. Suponiendo que las velocidades de disparo son idénticas en ambos casos, qué distancia penetrará la bala en el bloque? En el primer caso, toda la energía que inicialmente tenía la bala se ha perdido, ya que después del choque el bloque y la bala quedan en reposo. Esta energía perdida se ha empleado en penetrar en el bloque, con la consiguiente deformación. La energía perdida es: E 1 = 1 2 mv2 0 donde m es la masa de la bala y v 0 la velocidad que lleva antes del choque. En el segundo caso, la bala se incrusta también en el bloque, pero después del choque la bala y el bloque se mueven con una cierta velocidad. Esta velocidad final (v f ) se puede calcular teniendo en cuenta que en este segundo caso no existe ninguna fuerza exterior impulsiva actuando sobre el sistema bala-bloque en el dirección horizontal, por lo que el momento lineal total del sistema se conservará en esta dirección: p total 0x = p total fx El momento lineal total inicial es p total 0x = mv 0, mientras que el momento lineal total final es = (m + M)v f, con M la masa del bloque. Con esto, la conservación del momento lineal p total fx queda: mv 0 = (m + M)v f lo que permite establecer una relación entre la velocidad después del choque y antes del choque: m v f = v 0 m + M Con esta velocidad final se puede calcular la energía perdida en el choque: E 2 = 1 2 mv (m + M)v2 f = 1 2 mv2 0 1 ( 2 (m + M) m v 0 m + M 4 ) 2

5 E 2 = 1 mm 2 m + M v2 0 La energía que se pierde en el choque es debida a la acción de las fuerzas de rozamiento internas (F r ), que son no-conservativas. Si se consideran estas fuerzas constantes durante el tiempo que tarda la bala en incrustarse, el trabajo realizado por estas fuerzas será igual al valor de la fuerza por la profundidad a la que se ha incrustado la bala. La energía perdida será por tanto igual al trabajo de estas fuerzas de rozamiento, y por tanto, proporcional a la profundidad a la que se ha incrustado la bala: { E1 = F r d 1 E 2 = F r d 2 donde d 1 es la profundidad a la que se incrusta la bala en el primer caso y d 2 la profundidad a la que se incrusta la bala en el segundo caso. Dividiendo las energía se obtiene: E 1 E 2 = d 1 d 2 por lo que la profundidad a la que se incrusta la bala en el segundo caso es: E 2 M d 2 = d 1 = d 1 E 1 M + m d 2 = 7,93 cm 3. Un hombre se encuentra sobre una barca de 200 kg en un lago. El hombre se pone de pie y lanza una lata llena (masa 0,4 kg) con un ángulo de 45 o, de forma que llega justo hasta la orilla. Observa que la barca y él han retrocedido 1,2 m durante el tiempo que la lata ha estado en el aire. Sabiendo que el hombre pesa 70 kg, calcúlese la distancia a la que se encuentra inicialmente de la orilla y la velocidad con la que la lata fue lanzada. Sobre el sistema barca-hombre-lata las únicas fuerzas que actúan son verticales, concretamente el empuje del agua sobre la barca y el peso, por lo que en la dirección horizontal el momento total del sistema se conservará, durante todo el movimiento. (p total fx Por tanto, el momento total del sistema en la dirección horizontal antes (p total 0x ) y después ) de haber lanzado la lata será el mismo (también lo será en la dirección vertical, pero no resulta de utilidad en la resolución del problema). Como inicialmente está en reposo, esto significa: p total 0x = p total fx = 0 El momento total en la dirección horizontal después del lanzamiento será la suma del momento lineal de la lata, p lx = m l v lx, en esa dirección más el momento lineal de la barca y el hombre, p bhx = (m b + m h )v bhx ; con m l, m b y m h las masas de la lata, la barca y el hombre, respectivamente, y v l y v bh los módulos de las velocidades de la lata y del sistema hombre-barca, respectivamente. Como ya se ha dicho antes, la suma de los dos momentos tiene que ser nula: p fx = p lx + p bhx = m l v lx + (m b + m h )v bhx = 0 por lo que: v bhx = m l v lx m b + m h La lata se lanza con una velocidad v l y con un ángulo con la horizontal de α = 45 o, por lo que la velocidad horizontal de la barca y el hombre queda: v bhx = m l m b + m h v l cos α = 0 5

6 Por otro lado, durante el tiempo que la lata está en el aire, la barca y el hombre retroceden una distancia d 1 = 1,2 m, de lo que se deduce que el tiempo que la lata ha estado en el aire t 1 es: t 1 = d 1 v bhx = d 1(m b + m h ) m l v l cos α El movimiento de la lata es una tiro parabólico, de forma que sus ecuaciones del movimiento y la velocidad son: r = r 0 + v 0 t + 1 { x = x0 + v 2 gt2 0x t y = y 0 + v 0y t 1 2 { gt2 v = v 0 t + gt 2 vx = v 0x v y = v 0y gt Colocamos el origen de coordenadas en el punto en el que se lanza la lata, y suponemos que la altura a la que se realiza el lanzamiento es la misma que la de la orilla, con lo que las condiciones iniciales serán: x 0 = y 0 = 0; v 0x = v l cos α; v 0y = v l senα El punto en el que cae corresponde a y = 0, y el tiempo empleado en llegar a ese punto corresponde al tiempo t 1, que ha aparecido con anterioridad. De esta forma: ) 0 = v l senαt gt2 1 = 0 = t 1 (v l senα 1 2 gt 1 = 0 = v l senα 1 2 gt 1 Si se sustituye la expresión ya obtenida de t 1 en la anterior ecuación, se obtiene una ecuación donde la única incógnita es la velocidad de salida de la lata: 0 = v l senα 1 2 g d 1(m b + m h ) m l v l cos α v gd 1 (m b + m h ) l = 2m l cos αsenα v l = 89,1 m/s 2 Para calcular la distancia a la que se encuentra la barca de la orilla inicialmente, d 2, sólo hay que calcular la distancia horizontal recorrida por la lata: d 2 = v l cos αt 1 = v l cos α d 1(m b + m h ) m l v l cos α = d 1(m b + m h ) m l d 2 = 810 m 6

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2012 Problemas (Dos puntos por problema).

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2012 Problemas (Dos puntos por problema). Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 01 Problemas (Dos puntos por problema). Problema 1 (Primer parcial): Suponga que trabaja para una gran compañía de transporte y que

Más detalles

Trabajo y Energía. W = FO. xo. t t =mvo. vo= ( 1 2 m vo2 )= K, y, F z = U E = K +U. E =K + i. U i

Trabajo y Energía. W = FO. xo. t t =mvo. vo= ( 1 2 m vo2 )= K, y, F z = U E = K +U. E =K + i. U i Trabajo y Energía Trabajo vo xo=m vo xo W = FO. xo FO: Fuerza aplicada, XOes el desplazamiento. Usando la Segunda Ley de Newton: W = m t t =mvo. vo= ( 1 2 m vo2 )= K, Teorema del Trabajo y la Energía K

Más detalles

PROBLEMAS RESUELTOS TEMA: 3

PROBLEMAS RESUELTOS TEMA: 3 PROBLEMAS RESUELTOS TEMA: 3 1. Una partícula de 3 kg se desplaza con una velocidad de cuando se encuentra en. Esta partícula se encuentra sometida a una fuerza que varia con la posición del modo indicado

Más detalles

LEYES DE LA DINÁMICA Y APLICACIONES

LEYES DE LA DINÁMICA Y APLICACIONES CONTENIDOS. LEYES DE LA DINÁMICA Y APLICACIONES Unidad 14 1.- Cantidad de movimiento. 2.- Primera ley de Newton (ley de la inercia). 3.- Segunda ley de la Dinámica. 4.- Impulso mecánico. 5.- Conservación

Más detalles

Física I (Biociencias y Geociencias) - 2015. PRÁCTICO 6 (Momento lineal y choque, Momento angular, Propiedades elásticas de los materiales)

Física I (Biociencias y Geociencias) - 2015. PRÁCTICO 6 (Momento lineal y choque, Momento angular, Propiedades elásticas de los materiales) Física I (Biociencias y Geociencias) - 2015 PRÁCTICO 6 (Momento lineal y choque, Momento angular, Propiedades elásticas de los materiales) 6.1 (A) Un coche de 1000 kg y un camión de 2000 kg corren ambos

Más detalles

Capítulo 1. Mecánica

Capítulo 1. Mecánica Capítulo 1 Mecánica 1 Velocidad El vector de posición está especificado por tres componentes: r = x î + y ĵ + z k Decimos que x, y y z son las coordenadas de la partícula. La velocidad es la derivada temporal

Más detalles

Problemas de Física 1 o Bachillerato

Problemas de Física 1 o Bachillerato Problemas de Física o Bachillerato Principio de conservación de la energía mecánica. Desde una altura h dejamos caer un cuerpo. Hallar en qué punto de su recorrido se cumple E c = 4 E p 2. Desde la parte

Más detalles

TRABAJO Y ENERGÍA. a) Calcule el trabajo en cada tramo. b) Calcule el trabajo total.

TRABAJO Y ENERGÍA. a) Calcule el trabajo en cada tramo. b) Calcule el trabajo total. TRABAJO Y ENERGÍA 1.-/ Un bloque de 20 kg de masa se desplaza sin rozamiento 14 m sobre una superficie horizontal cuando se aplica una fuerza, F, de 250 N. Se pide calcular el trabajo en los siguientes

Más detalles

[c] Qué energía mecánica posee el sistema muelle-masa? Y si la masa fuese 2 y la constante 2K?.

[c] Qué energía mecánica posee el sistema muelle-masa? Y si la masa fuese 2 y la constante 2K?. Actividad 1 La figura representa un péndulo horizontal de resorte. La masa del bloque vale M y la constante elástica del resorte K. No hay rozamientos. Inicialmente el muelle está sin deformar. [a] Si

Más detalles

Pregunta Señala tu respuesta 1 A B C D E 2 A B C D E 3 A B C D E 4 A B C D E 5 A B C D E 6 A B C D E 7 A B C D E Tiempo = 90 minutos

Pregunta Señala tu respuesta 1 A B C D E 2 A B C D E 3 A B C D E 4 A B C D E 5 A B C D E 6 A B C D E 7 A B C D E Tiempo = 90 minutos XVI OLIMPIADA DE LA FÍSICA- FASE LOCAL- Enero 2005 UNIVERSIDAD DE CASTILLA-LA MANCHA PUNTUACIÓN Apellidos Nombre DNI Centro Población Provincia Fecha Teléfono e-mail Las siete primeras preguntas no es

Más detalles

2. Dado el campo de fuerzas F x, Solución: W = 6 J

2. Dado el campo de fuerzas F x, Solución: W = 6 J UNIVERSIDD DE OVIEDO Escuela Politécnica de Ingeniería de Gijón Curso 013-4 1. Dos objetos, uno con masa doble que el otro, cuelgan de los extremos de la cuerda de una polea fija de masa despreciable y

Más detalles

Energía. Preguntas de Opción Múltiple.

Energía. Preguntas de Opción Múltiple. Energía. Preguntas de Opción Múltiple. Física- PSI Nombre Opción Múltiple 1. Se empuja un bloque con una cierta masa a una distancia d y se aplica una fuerza F en sentido paralelo al desplazamiento. Cuánto

Más detalles

CURSO 2010-2011 SEGUNDO EXAMEN TIPO TEST MODELO 1

CURSO 2010-2011 SEGUNDO EXAMEN TIPO TEST MODELO 1 CURSO 00-0 SEGUNDO EXAMEN TIPO TEST MODELO.- Cuál de las siguientes afirmaciones es correcta?: a) Las energías cinética y potencial de un cuerpo deben ser siempre magnitudes positivas. b) Las energías

Más detalles

IES RIBERA DE CASTILLA ENERGÍA MECÁNICA Y TRABAJO

IES RIBERA DE CASTILLA ENERGÍA MECÁNICA Y TRABAJO UNIDAD 6 ENERGÍA MECÁNICA Y TRABAJO La energía y sus propiedades. Formas de manifestarse. Conservación de la energía. Transferencias de energía: trabajo y calor. Fuentes de energía. Renovables. No renovables.

Más detalles

6 Energía mecánica y trabajo

6 Energía mecánica y trabajo 6 Energía mecánica y trabajo EJERCICIOS PROPUESTOS 6.1 Indica tres ejemplos de sistemas o cuerpos de la vida cotidiana que tengan energía asociada al movimiento. Una persona que camina, un automóvil que

Más detalles

5ª GUIA DE EJERCICIOS 2º SEMESTRE 2010

5ª GUIA DE EJERCICIOS 2º SEMESTRE 2010 UNIVRSI HIL - FULT INIS - PRTMNTO FISI 5ª GUI JRIIOS 2º SMSTR 2010 NRGÍ 1.- María y José juegan deslizándose por un tobogán de superficie lisa. Usan para ello un deslizador de masa despreciable. mbos parten

Más detalles

) = cos ( 10 t + π ) = 0

) = cos ( 10 t + π ) = 0 UNIDAD Actividades de final de unidad Ejercicios básicos. La ecuación de un M.A.S., en unidades del SI, es: x = 0,0 sin (0 t + π ) Calcula la velocidad en t = 0. dx π La velocidad es v = = 0,0 0 cos (

Más detalles

INSTITUTO NACIONAL Dpto. de Física Prof: Aldo Scapini G.

INSTITUTO NACIONAL Dpto. de Física Prof: Aldo Scapini G. GUÍA DE ENERGÍA Nombre:...Curso:... En la presente guía estudiaremos el concepto de Energía Mecánica, pero antes nos referiremos al concepto de energía, el cuál desempeña un papel de primera magnitud tanto

Más detalles

Experimento 7 MOMENTO LINEAL. Objetivos. Teoría. Figura 1 Dos carritos sufren una colisión parcialmente inelástica

Experimento 7 MOMENTO LINEAL. Objetivos. Teoría. Figura 1 Dos carritos sufren una colisión parcialmente inelástica Experimento 7 MOMENTO LINEAL Objetivos 1. Verificar el principio de conservación del momento lineal en colisiones inelásticas, y 2. Comprobar que la energía cinética no se conserva en colisiones inelásticas

Más detalles

TRABAJO Y ENERGÍA Página 1 de 13

TRABAJO Y ENERGÍA Página 1 de 13 TRABAJO Y ENERGÍA Página 1 de 13 EJERCICIOS DE TRABAJO Y ENERGÍA RESUELTOS: Ejemplo 1: Calcular el trabajo necesario para estirar un muelle 5 cm, si la constante del muelle es 1000 N/m. La fuerza necesaria

Más detalles

TRABAJO Y ENERGÍA: CHOQUES

TRABAJO Y ENERGÍA: CHOQUES . TRABAJO Y ENERGÍA: CHOQUES Una bola de acero que cae verticalmente rebota en una placa ríida que forma un ánulo con la horizontal. Calcular para que la bola sala con una velocidad horizontal después

Más detalles

CAMPO ELÉCTRICO FCA 10 ANDALUCÍA

CAMPO ELÉCTRICO FCA 10 ANDALUCÍA CMO LÉCTRICO FC 0 NDLUCÍ. a) xplique la relación entre campo y potencial electrostáticos. b) Una partícula cargada se mueve espontáneamente hacia puntos en los que el potencial electrostático es mayor.

Más detalles

Módulo 1: Mecánica Cantidad de movimiento (momentum) Un objeto A golpea a un objeto B. Qué pasa?

Módulo 1: Mecánica Cantidad de movimiento (momentum) Un objeto A golpea a un objeto B. Qué pasa? Módulo 1: Mecánica Cantidad de movimiento (momentum) Un objeto A golpea a un objeto B. Qué pasa? Cantidad de movimiento La cantidad de movimiento de un objeto es, Cantidad de movimiento = Masa Velocidad

Más detalles

14º Un elevador de 2000 kg de masa, sube con una aceleración de 1 m/s 2. Cuál es la tensión del cable que lo soporta? Sol: 22000 N

14º Un elevador de 2000 kg de masa, sube con una aceleración de 1 m/s 2. Cuál es la tensión del cable que lo soporta? Sol: 22000 N Ejercicios de dinámica, fuerzas (4º de ESO/ 1º Bachillerato): 1º Calcular la masa de un cuerpo que al recibir una fuerza de 0 N adquiere una aceleración de 5 m/s. Sol: 4 kg. º Calcular la masa de un cuerpo

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS DEBER # 3 TRABAJO Y ENERGÍA

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS DEBER # 3 TRABAJO Y ENERGÍA ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS DEBER # 3 TRABAJO Y ENERGÍA 1.- El bloque mostrado se encuentra afectado por fuerzas que le permiten desplazarse desde A hasta B.

Más detalles

TRABAJO. ENERGÍA. PRINCIPIO DE CONSERVACIÓN

TRABAJO. ENERGÍA. PRINCIPIO DE CONSERVACIÓN TRABAJO. ENERGÍA. PRINCIPIO DE CONSERVACIÓN Un coche de 50 kg (con el conductor incluido) que funciona con gasolina está situado en una carretera horizontal, arranca y acelerando uniformemente, alcanza

Más detalles

Examen de Física I. Dinámica, Energía, Leyes de Kepler, L.G.U. Soluciones

Examen de Física I. Dinámica, Energía, Leyes de Kepler, L.G.U. Soluciones Examen de Física I Dinámica, Energía, Leyes de Kepler, L.G.U. Soluciones 1. a) Enuncie las leyes de Kepler. Kepler enunció tres leyes que describían el movimiento planetario: 1 a ley o ley de las órbitas.

Más detalles

3. Una pelota se lanza desde el suelo hacia arriba. En un segundo llega hasta una altura de 25 m. Cuál será la máxima altura alcanzada?

3. Una pelota se lanza desde el suelo hacia arriba. En un segundo llega hasta una altura de 25 m. Cuál será la máxima altura alcanzada? Problemas de Cinemática 1 o Bachillerato Caída libre y tiro horizontal 1. Desde un puente se tira hacia arriba una piedra con una velocidad inicial de 6 m/s. Calcula: a) Hasta qué altura se eleva la piedra;

Más detalles

EXAMEN TIPO TEST NÚMERO 2 MODELO 1 (Física I curso 2008-09)

EXAMEN TIPO TEST NÚMERO 2 MODELO 1 (Física I curso 2008-09) EXAMEN TIPO TEST NÚMERO MODELO 1 (Física I curso 008-09) 1.- Un río de orillas rectas y paralelas tiene una anchura de 0.76 km. La corriente del río baja a 4 km/h y es paralela a los márgenes. El barquero

Más detalles

1. Hallar a qué velocidad hay que realizar un tiro parabólico para que llegue a una altura máxima de 100 m si el ángulo de tiro es de 30 o.

1. Hallar a qué velocidad hay que realizar un tiro parabólico para que llegue a una altura máxima de 100 m si el ángulo de tiro es de 30 o. Problemas de Cinemática 1 o Bachillerato Tiro parabólico y movimiento circular 1. Hallar a qué velocidad hay que realizar un tiro parabólico para que llegue a una altura máxima de 100 m si el ángulo de

Más detalles

ALGUNOS EJERCICIOS RESUELTOS DE TRABAJO Y ENERGÍA (BOLETÍN DEL TEMA 1)

ALGUNOS EJERCICIOS RESUELTOS DE TRABAJO Y ENERGÍA (BOLETÍN DEL TEMA 1) I..S. l-ándalus. Dpto de ísica y Química. ísica º Bachillerato LGUS JRCICIS RSULTS D TRBJ Y RGÍ (BLTÍ DL TM ). Un bloque de 5 kg desliza con velocidad constante por una superficie horizontal mientras se

Más detalles

Ejercicios resueltos

Ejercicios resueltos Ejercicios resueltos oletín 6 Campo magnético Ejercicio Un electrón se acelera por la acción de una diferencia de potencial de 00 V y, posteriormente, penetra en una región en la que existe un campo magnético

Más detalles

(m 2.g - m 2.a - m 1.g - m 1.a ).R = (M.R 2 /2 ). a / R. a = ( m 2 - m 1 ).g / (m 2 + m 1 + M/2) las tensiones son distintas.

(m 2.g - m 2.a - m 1.g - m 1.a ).R = (M.R 2 /2 ). a / R. a = ( m 2 - m 1 ).g / (m 2 + m 1 + M/2) las tensiones son distintas. Dos masas de 1 y 2 kg están unidas por una cuerda inextensible y sin masa que pasa por una polea sin rozamientos. La polea es izada con velocidad constante con una fuerza de 40 Nw. Calcular la tensión

Más detalles

PROBLEMAS DE DINÁMICA. 1. Calcula la fuerza que habrá que realizar para frenar, hasta detener en 10 segundos un trineo que se mueve a 50 km/h.

PROBLEMAS DE DINÁMICA. 1. Calcula la fuerza que habrá que realizar para frenar, hasta detener en 10 segundos un trineo que se mueve a 50 km/h. PROBLEMAS DE DINÁMICA 1. Calcula la fuerza que habrá que realizar para frenar, hasta detener en 10 segundos un trineo que se mueve a 50 km/h. 2. Un vehículo de 800 kg se mueve en un tramo recto y horizontal

Más detalles

Tema 4. Sistemas de partículas

Tema 4. Sistemas de partículas Física I. Curso 2010/11 Departamento de Física Aplicada. ETSII de Béjar. Universidad de Salamanca Profs. Alejandro Medina Domínguez y Jesús Ovejero Sánchez Tema 4. Sistemas de partículas Índice 1. Introducción

Más detalles

Ejercicios resueltos de cinemática

Ejercicios resueltos de cinemática Ejercicios resueltos de cinemática 1) Un cuerpo situado 50 metros por debajo del origen, se mueve verticalmente con velocidad inicial de 20 m/s, siendo la aceleración de la gravedad g = 9,8 m/s 2. a) Escribe

Más detalles

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Energía y trabajo (II)

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Energía y trabajo (II) 1(7) Ejercicio nº 1 Se desea trasladar 40 m por una superficie horizontal un cuerpo de 12 kg tirando con una fuerza de 40 que forma un ángulo de 60º con la horizontal. Si el coeficiente de rozamiento vale

Más detalles

1 Yoyó con cuerda despreciable 1

1 Yoyó con cuerda despreciable 1 1 Yoyó con cuerda despreciable 1 En este documento se describe el problema clásico de la Física elemental en el que un yoyó, modelado como un disco, cae bajo la acción de la gravedad, sujeto con una cuerda

Más detalles

Ejercicios resueltos

Ejercicios resueltos Ejercicios resueltos Boletín 5 Campo eléctrico Ejercicio 1 La masa de un protón es 1,67 10 7 kg y su carga eléctrica 1,6 10 19 C. Compara la fuerza de repulsión eléctrica entre dos protones situados en

Más detalles

1. Trabajo y energía TRABAJO HECHO POR UNA FUERZA CONSTANTE

1. Trabajo y energía TRABAJO HECHO POR UNA FUERZA CONSTANTE Trabajo y energía 1. Trabajo y energía Hasta ahora hemos estudiado el movimiento traslacional de un objeto en términos de las tres leyes de Newton. En este análisis la fuerza ha jugado un papel central.

Más detalles

GUIA DE PROBLEMAS. 3) La velocidad de un auto en función del tiempo, sobre un tramo recto de una carretera, está dada por

GUIA DE PROBLEMAS. 3) La velocidad de un auto en función del tiempo, sobre un tramo recto de una carretera, está dada por Unidad : Cinemática de la partícula GUIA DE PROBLEMAS 1)-Un automóvil acelera en forma uniforme desde el reposo hasta 60 km/h en 8 s. Hallar su aceleración y desplazamiento durante ese tiempo. a = 0,59

Más detalles

ESPECIALIDADES : GUIA DE PROBLEMAS N 3

ESPECIALIDADES : GUIA DE PROBLEMAS N 3 ASIGNATURA : ESPECIALIDADES : Ing. CIVIL Ing. MECANICA Ing. ELECTROMECANICA Ing. ELECTRICA GUIA DE PROBLEMAS N 3 2015 1 GUIA DE PROBLEMAS N 3 PROBLEMA Nº1 Un carro de carga que tiene una masa de 12Mg es

Más detalles

TRABAJO Y ENERGÍA. Campos de fuerzas

TRABAJO Y ENERGÍA. Campos de fuerzas TRABAJO Y ENERGÍA 1. Campos de fuerzas. Fuerzas dependientes de la posición. 2. Trabajo. Potencia. 3. La energía cinética: Teorema de la energía cinética. 4. Campos conservativos de fuerzas. Energía potencial.

Más detalles

PROBLEMAS SELECCIONADOS DE DINÁMICA / TRABAJO Y ENERGÍA

PROBLEMAS SELECCIONADOS DE DINÁMICA / TRABAJO Y ENERGÍA PROBLEMAS SELECCIONADOS DE DINÁMICA / TRABAJO Y ENERGÍA Antonio J. Barbero / Alfonso Calera Belmonte / Mariano Hernández Puche Departamento de Física Aplicada UCLM Escuela Técnica Superior de Agrónomos

Más detalles

1. El vector de posición de una partícula, en unidades del SI, queda determinado por la expresión: r (t)=3t i +(t 2 2 t) j.

1. El vector de posición de una partícula, en unidades del SI, queda determinado por la expresión: r (t)=3t i +(t 2 2 t) j. IES ARQUITECTO PEDRO GUMIEL BA1 Física y Química UD 1: Cinemática 1. El vector de posición de una partícula, en unidades del SI, queda determinado por la expresión: r (t)=3t i +(t t) j. a) Determina los

Más detalles

TRABAJO Y ENERGIA: TRABAJO Y POTENCIA

TRABAJO Y ENERGIA: TRABAJO Y POTENCIA TRABAJO Y ENERGIA: TRABAJO Y POTENCIA Un telesilla está diseñado para transportar 9 esquiadores por hora desde la base hasta la cima (de coordenadas (25 m, 15m) respecto de la base). La masa promedio de

Más detalles

PROBLEMAS RESUELTOS SOBRE MOVIMIENTO ARMÓNICO SIMPLE

PROBLEMAS RESUELTOS SOBRE MOVIMIENTO ARMÓNICO SIMPLE PROBLEMAS RESUELTOS SOBRE MOVIMIENTO ARMÓNICO SIMPLE ) La ecuación de un M.A.S. es x(t) cos 0t,, en la que x es la elongación en cm y t en s. Cuáles son la amplitud, la frecuencia y el período de este

Más detalles

Examen de Física-1, 1 Ingeniería Química Segundo parcial. Enero de 2013 Problemas (Dos puntos por problema).

Examen de Física-1, 1 Ingeniería Química Segundo parcial. Enero de 2013 Problemas (Dos puntos por problema). Dinámica Examen de Física-1, 1 Ingeniería Química Segundo parcial Enero de 013 Problemas (Dos puntos por problema) Problema 1: Un resorte vertical de constante k1000 N/m sostiene un plato de M kg de masa

Más detalles

Resumen fórmulas de energía y trabajo

Resumen fórmulas de energía y trabajo Resumen fórmulas de energía y trabajo Si la fuerza es variable W = F dr Trabajo r Si la fuerza es constante r r r W = F Δ = F Δ cosθ r Si actúan varias fuerzas r r r r r W total = Δ + F Δ + + Δ = W + W

Más detalles

Movimiento en dos y tres dimensiones. Teoría. Autor:

Movimiento en dos y tres dimensiones. Teoría. Autor: Movimiento en dos y tres dimensiones Teoría Autor: YeissonHerney Herrera Contenido 1. Introducción 1.1. actividad palabras claves unid 2. Vector posición 2.1. Explicación vector posición 2.2. Animación

Más detalles

Julián Moreno Mestre www.juliweb.es

Julián Moreno Mestre www.juliweb.es Ejercicio de cálculos de trabajo: 1º Una bomba hidráulica llena un depósito de 500 L situado a 6 m de altura. Qué trabajo ha realizado? Sol: 2.94 10 5 J. 2º Determinar el trabajo realizado por una fuerza

Más detalles

3 Estudio de diversos movimientos

3 Estudio de diversos movimientos 3 Estudio de diversos movimientos EJERCICIOS PROPUESTOS 3.1 Un excursionista, de pie ante una montaña, tarda 1,4 s en oír el eco de su voz. Sabiendo que el sonido viaja en el aire a velocidad constante

Más detalles

1. El vector de posición de una partícula viene dado por la expresión: r = 3t 2 i 3t j.

1. El vector de posición de una partícula viene dado por la expresión: r = 3t 2 i 3t j. 1 1. El vector de posición de una partícula viene dado por la expresión: r = 3t 2 i 3t j. a) Halla la posición de la partícula para t = 3 s. b) Halla la distancia al origen para t = 3 s. 2. La velocidad

Más detalles

TRABAJO Y ENERGÍA - EJERCICIOS

TRABAJO Y ENERGÍA - EJERCICIOS TRABAJO Y ENERGÍA - EJERCICIOS Hallar la energía potencial gravitatoria adquirida por un alpinista de 80 kg que escala una montaña de.00 metros de altura. Epg mgh 0,5 kg 9,8 m / s 0,8 m 3,9 J Su energía

Más detalles

FÍSICA Y QUÍMICA - 4º ESO LAS FUERZAS PRINCIPIOS FUNDAMENTALES DE LA DINÁMICA (LEYES DE NEWTON) INERCIA

FÍSICA Y QUÍMICA - 4º ESO LAS FUERZAS PRINCIPIOS FUNDAMENTALES DE LA DINÁMICA (LEYES DE NEWTON) INERCIA PRINCIPIOS FUNDAMENTALES DE LA DINÁMICA (LEYES DE NEWTON) INERCIA 1. Todo cuerpo tiene tendencia a permanecer en su estado de movimiento. Esta tendencia recibe el nombre de inercia. 2. La masa es una medida

Más detalles

TRABAJO ENERGÍA CONSERVACIÓN DE ENERGÍA MECÁNICA

TRABAJO ENERGÍA CONSERVACIÓN DE ENERGÍA MECÁNICA TRABAJO ENERGÍA CONSERVACIÓN DE ENERGÍA MECÁNICA 1. La figura muestra una bola de 100 g. sujeta a un resorte sin estiramiento, de longitud L 0 = 19 cm y constante K desconocida. Si la bola se suelta en

Más detalles

Examen de TEORIA DE MAQUINAS Junio 95 Nombre...

Examen de TEORIA DE MAQUINAS Junio 95 Nombre... Examen de TEORIA DE MAQUINAS Junio 95 Nombre... El sistema de la figura es un modelo simplificado de un vehículo y se encuentra sometido a la acción de la gravedad. Sus características son: masa m=10 Kg,

Más detalles

frenado?. fuerza F = xi - yj desde el punto (0,0) al

frenado?. fuerza F = xi - yj desde el punto (0,0) al 1. Calcular el trabajo realizado por la fuerza F = xi + yj + + zk al desplazarse a lo largo de la curva r = cos ti + sen tj + 3tk desde el punto A(1,0,0) al punto B(0,1,3π/2), puntos que corresponden a

Más detalles

PROBLEMAS DE EQUILIBRIO

PROBLEMAS DE EQUILIBRIO PROBLEMAS DE EQUILIBRIO NIVEL BACHILLERATO Con una honda Curva con peralte Tomar una curva sin volcar Patinador en curva Equilibrio de una puerta Equilibrio de una escalera Columpio Cuerda sobre cilindro

Más detalles

La masa es la magnitud física que mide la inercia de los cuerpos: N

La masa es la magnitud física que mide la inercia de los cuerpos: N Pág. 1 16 Las siguientes frases, son verdaderas o falsas? a) Si el primer niño de una fila de niños que corren a la misma velocidad lanza una pelota verticalmente hacia arriba, al caer la recogerá alguno

Más detalles

ENUNCIADO HABITUAL ENUNCIADO TRANSFORMADO

ENUNCIADO HABITUAL ENUNCIADO TRANSFORMADO 1. La velocidad de la luz en el vacío es de 300.000 km/s. La luz del Sol tarda en llegar a la Tierra 8 minutos y 20 segundos. Cuál es la distancia del Sol a la Tierra?. 2. Un ciclista lleva una velocidad

Más detalles

XXII OLIMPIADA DE LA FÍSICA- FASE LOCAL- Febrero 2011 UNIVERSIDAD DE CASTILLA-LA MANCHA

XXII OLIMPIADA DE LA FÍSICA- FASE LOCAL- Febrero 2011 UNIVERSIDAD DE CASTILLA-LA MANCHA XXII OLIMPIADA DE LA FÍSICA- FASE LOCAL- Febrero 011 UNIVERSIDAD DE CASTILLA-LA MANCHA Apellidos Nombre DNI Centro Población Provincia Fecha Teléfonos (fijo y móvil) e-mail (en mayúsculas) PUNTUACIÓN Tómese

Más detalles

Física P.A.U. ELECTROMAGNETISMO 1 ELECTROMAGNETISMO. F = m a

Física P.A.U. ELECTROMAGNETISMO 1 ELECTROMAGNETISMO. F = m a Física P.A.U. ELECTOMAGNETISMO 1 ELECTOMAGNETISMO INTODUCCIÓN MÉTODO 1. En general: Se dibujan las fuerzas que actúan sobre el sistema. Se calcula la resultante por el principio de superposición. Se aplica

Más detalles

Curso de Preparación Universitaria: Física Guía de Problemas N o 6: Trabajo y Energía Cinética

Curso de Preparación Universitaria: Física Guía de Problemas N o 6: Trabajo y Energía Cinética Curso de Preparación Universitaria: Física Guía de Problemas N o 6: Trabajo y Energía Cinética Problema 1: Sobre un cuerpo que se desplaza 20 m está aplicada una fuerza constante, cuya intensidad es de

Más detalles

EJERCICIOS RESUELTOS 1º DE BACHILLERATO (Hnos. Machado): EJERCICIOS DE REFUERZO 1º EVALUACIÓN (Cinemática) Por Álvaro Téllez Róbalo

EJERCICIOS RESUELTOS 1º DE BACHILLERATO (Hnos. Machado): EJERCICIOS DE REFUERZO 1º EVALUACIÓN (Cinemática) Por Álvaro Téllez Róbalo EJERCICIOS RESUELTOS 1º DE BACHILLERATO (Hnos. Machado): EJERCICIOS DE REFUERZO 1º EVALUACIÓN (Cinemática) Por Álvaro Téllez Róbalo 1. El vector posición de un punto, en función del tiempo, viene dado

Más detalles

XIV OLIMPIADA DE LA FÍSICA- FASE LOCAL- Enero 2003 UNIVERSIDAD DE CASTILLA-LA MANCHA

XIV OLIMPIADA DE LA FÍSICA- FASE LOCAL- Enero 2003 UNIVERSIDAD DE CASTILLA-LA MANCHA XIV OLIMPIADA DE LA FÍSICA- FASE LOCAL- Enero 2003 UNIVERSIDAD DE CASTILLA-LA MANCHA PUNTUACIÓN Apellidos Nombre DNI e - mail Centro Población Provincia Fecha Teléfono Las siete primeras preguntas no es

Más detalles

Slide 1 / 31. Slide 2 / 31. Slide 3 / 31. mfd. mfd. mfd

Slide 1 / 31. Slide 2 / 31. Slide 3 / 31. mfd. mfd. mfd 1 Se empuja un bloque con una cierta masa a una distancia d y se aplica una fuerza F en sentido paralelo al desplazamiento. uánto trabajo realiza la fuerza F en el bloque? Slide 1 / 31 mfd cero Fd F/d

Más detalles

2 )d = 5 kg x (9,8 m/s 2 + ( ) 2

2 )d = 5 kg x (9,8 m/s 2 + ( ) 2 Solucionario TRABAJO, ENERGIA Y POTENCIA MECANICA 1.- Calcular el trabajo realizado al elevar un cuerpo de 5 kg hasta una altura de 2 m en 3 s. Expresar el resultado en Joule y en erg. Voy a proponer dos

Más detalles

FASE ESPECÍFICA RESPUESTAS FÍSICA

FASE ESPECÍFICA RESPUESTAS FÍSICA UNIVERSIDAD POLITÉCNICA DE CARTAGENA PRUEBAS DE ACCESO A LA UNIVERSIDAD DE LOS MAYORES DE 25 AÑOS Convocatoria 2013 FASE ESPECÍFICA RESPUESTAS FÍSICA En cada Bloque elija una Opción: Bloque 1.- Teoría

Más detalles

1erg = 10^-7 J, y la libra- pie (lb pie), donde 1lb pie = 1.355 J.

1erg = 10^-7 J, y la libra- pie (lb pie), donde 1lb pie = 1.355 J. El TRABAJO efectuado por una fuerza F se define de la siguiente manera. Como se muestra en la figura, una fuerza F actúa sobre un cuerpo. Este presenta un desplazamiento vectorial s. La componente de F

Más detalles

Dinámica. Fuerza es lo que produce cualquier cambio en la velocidad de un objeto. Una fuerza es lo que causa una aceleración

Dinámica. Fuerza es lo que produce cualquier cambio en la velocidad de un objeto. Una fuerza es lo que causa una aceleración Tema 4 Dinámica Fuerza Fuerza es lo que produce cualquier cambio en la velocidad de un objeto Una fuerza es lo que causa una aceleración La fuerza neta es la suma de todas las fuerzas que actúan sobre

Más detalles

TRABAJO Y ENERGIA: FUERZAS NO CONSERVATIVAS

TRABAJO Y ENERGIA: FUERZAS NO CONSERVATIVAS TRJO Y ENERGI: FUERZS NO CONSERVTIVS Determinar (atendiendo a los conceptos de trabajo y energía, es decir, sin utilizar la 2ª ley de Newton) la aceleración que alcanza un bloque de masa m al bajar por

Más detalles

Experimento 6 LA CONSERVACIÓN DE LA ENERGÍA Y EL TEOREMA DEL TRABAJO Y LA ENERGÍA. Objetivos. Teoría

Experimento 6 LA CONSERVACIÓN DE LA ENERGÍA Y EL TEOREMA DEL TRABAJO Y LA ENERGÍA. Objetivos. Teoría Experimento 6 LA CONSERVACIÓN DE LA ENERGÍA Y EL TEOREMA DEL TRABAJO Y LA ENERGÍA Objetivos 1. Definir las energías cinética, potencial y mecánica. Explicar el principio de conservación de la energía mecánica

Más detalles

OSCILACIONES ARMÓNICAS

OSCILACIONES ARMÓNICAS Tema 5 OSCILACIONES ARMÓNICAS 5.1. Introducción. 5.. Movimiento armónico simple (MAS). 5.3. Cinemática y dinámica del MAS. 5.4. Fuerza y energía en el MAS. 5.5. Péndulo simple. MAS y movimiento circular

Más detalles

EJERCICIOS SOBRE CINEMÁTICA: EL MOVIMIENTO

EJERCICIOS SOBRE CINEMÁTICA: EL MOVIMIENTO EJERCICIOS SOBRE CINEMÁTICA: EL MOVIMIENTO Estrategia a seguir para resolver los ejercicios. 1. Lea detenidamente el ejercicio las veces que necesite, hasta que tenga claro en qué consiste y qué es lo

Más detalles

TRABAJO Y ENERGIA: PROBLEMAS VARIOS

TRABAJO Y ENERGIA: PROBLEMAS VARIOS TRABAJO Y ENERGIA: PROBLEMAS VARIOS En una erupción volcánica se expulsó una masa de 4 km 3 de montaña con una densidad de 1.6 g/cm 3 hasta una altura media de 500 m. a) Cuánta energía en julios se liberó

Más detalles

LEYES DE LA DINÁMICA

LEYES DE LA DINÁMICA LEYES DE LA DINÁMICA Introducción. Se requiere una fuerza para que exista movimiento? Qué o quién mueve a los planetas en sus órbitas? Estas preguntas, que durante años se hizo el hombre, fueron contestadas

Más detalles

El aro se encuentra en equilibrio? 53 o. 37 o 37º. Los tres dinamómetros, miden en Newton. III 0,5 1,0 1,5 0 0,5 1,0 1,5

El aro se encuentra en equilibrio? 53 o. 37 o 37º. Los tres dinamómetros, miden en Newton. III 0,5 1,0 1,5 0 0,5 1,0 1,5 -Un aro metálico de masa despreciable se encuentra sujetado, mediante hilos, por los tres dinamómetros, tal como se muestra en la figura. partir de la representación de la lectura de los tres instrumentos:

Más detalles

2. Qué sucede con la energía cinética de una bola que se mueve horizontalmente cuando:

2. Qué sucede con la energía cinética de una bola que se mueve horizontalmente cuando: PONTIFICIA UNIERSIA CATOLICA MARE Y MAESTA EPARTAMENTO E CIENCIAS BASICAS. INTROUCCION A LA FISICA Prof. Remigia Cabrera Unidad I. TRABAJO Y ENERGIA 1. emuestre que la energía cinética en el movimiento

Más detalles

PROBLEMAS RESUELTOS TRABAJO Y ENERGIA CUARTA, QUINTA Y SEXTA EDICION SERWAY. Raymond A. Serway

PROBLEMAS RESUELTOS TRABAJO Y ENERGIA CUARTA, QUINTA Y SEXTA EDICION SERWAY. Raymond A. Serway PROBLEMAS RESUELTOS TRABAJO Y ENERGIA CAPITULO 7 FISICA I CUARTA, QUINTA Y SEXTA EDICION SERWAY Raymond A. Serway Sección 7.1 Trabajo hecho por una fuerza constante Sección 7. El producto escalar de dos

Más detalles

Problemas de Cinemática 1 o Bachillerato

Problemas de Cinemática 1 o Bachillerato Problemas de Cinemática 1 o Bachillerato 1. Sean los vectores a = i y b = i 5 j. Demostrar que a + b = a + b a b cos ϕ donde ϕ es el ángulo que forma el vector b con el eje X.. Una barca, que lleva una

Más detalles

PRUEBA ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR OPCIÓN B y C, FÍSICA

PRUEBA ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR OPCIÓN B y C, FÍSICA PRUEBA ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR OPCIÓN B y C, FÍSICA DATOS DEL ASPIRANTE Apellidos: CALIFICACIÓN PRUEBA Nombre: D.N.I. o Pasaporte: Fecha de nacimiento: / / Instrucciones: Lee atentamente

Más detalles

M.R.U. v = cte. rectilíneo. curvilíneo. compos. movimiento

M.R.U. v = cte. rectilíneo. curvilíneo. compos. movimiento RECUERDA: La cinemática, es la ciencia, parte de la física, que se encarga del estudio del movimiento de los cuerpos, tratando de definirlos, clasificarlos y dotarlos de alguna utilidad práctica. El movimiento

Más detalles

TRABAJO Y ENERGIA MECANICA

TRABAJO Y ENERGIA MECANICA TRABAJO Y ENERGIA MECANICA 1. Si una persona saca de un pozo una cubeta de 20 [kg] y realiza 6.000 [J] de trabajo, cuál es la profundidad del pozo? (30,6 [m]) 2. Una gota de lluvia (3,35x10-5 [kg] apx.)

Más detalles

Tema 3. Trabajo y Energía

Tema 3. Trabajo y Energía Tema 3. Trabajo y Energía CONTENIDOS Energía, trabajo y potencia. Unidades SI (conceptos y cálculos) Teorema del trabajo y la energía. Energía cinética (conceptos y cálculos) Fuerzas conservativas. Energía

Más detalles

El trabajo W efectuado por un agente que ejerce una fuerza constante es igual al producto punto entre la fuerza F y el desplazamiento d

El trabajo W efectuado por un agente que ejerce una fuerza constante es igual al producto punto entre la fuerza F y el desplazamiento d El trabajo W efectuado por un agente que ejerce una fuerza constante es igual al producto punto entre la fuerza F y el desplazamiento d W F d Fd cos Si la fuerza se expresa en newton (N) y el desplazamiento

Más detalles

Teorema trabajo-energía: el trabajo efectuado por un cuerpo es igual al cambio de energía cinética o potencia.

Teorema trabajo-energía: el trabajo efectuado por un cuerpo es igual al cambio de energía cinética o potencia. INSTITUCION EDUCATIVA NACIONAL LOPERENA DEPARTAMENTO DE CIENCIAS NATURALES. FISICA I. CUESTIONARIO GENERAL IV PERIODO. NOTA: Es importante que cada una de las cuestiones así sean tipo Icfes, deben ser

Más detalles

EXAMEN FÍSICA 2º BACHILLERATO TEMA 1: CAMPO GRAVITATORIO

EXAMEN FÍSICA 2º BACHILLERATO TEMA 1: CAMPO GRAVITATORIO INSTRUCCIONES GENERALES Y VALORACIÓN La prueba consiste de dos opciones, A y B, y el alumno deberá optar por una de las opciones y resolver las tres cuestiones y los dos problemas planteados en ella, sin

Más detalles

Física P.A.U. VIBRACIONES Y ONDAS 1 VIBRACIONES Y ONDAS

Física P.A.U. VIBRACIONES Y ONDAS 1 VIBRACIONES Y ONDAS Física P.A.U. VIBRACIONES Y ONDAS 1 VIBRACIONES Y ONDAS INTRODUCCIÓN MÉTODO 1. En general: Se dibujan las fuerzas que actúan sobre el sistema. Se calcula la resultante por el principio de superposición.

Más detalles

Mecánica I, 2009. Trabajo efectuado por una fuerza constante. Trabajo hecho por una fuerza variable

Mecánica I, 2009. Trabajo efectuado por una fuerza constante. Trabajo hecho por una fuerza variable Departamento de Física Facultad de Ciencias Universidad de Chile Profesor: Gonzalo Gutiérrez Ayudantes: Uta Naether Felipe González Mecánica I, 2009 Guía 5: Trabajo y Energía Jueves 7 Mayo Tarea: Problemas

Más detalles

Guía 7 4 de mayo 2006

Guía 7 4 de mayo 2006 Física I GONZALO GUTÍERREZ FRANCISCA GUZMÁN GIANINA MENESES Universidad de Chile, Facultad de Ciencias, Departamento de Física, Santiago, Chile Guía 7 4 de mayo 2006 Conservación de la energía mecánica

Más detalles

DINÁMICA TRABAJO: POTENCIA Y ENERGÍA. MILTON ALFREDO SEPÚLVEDA ROULLETT Física I

DINÁMICA TRABAJO: POTENCIA Y ENERGÍA. MILTON ALFREDO SEPÚLVEDA ROULLETT Física I DINÁMICA TRABAJO: POTENCIA Y ENERGÍA MILTON ALFREDO SEPÚLVEDA ROULLETT Física I DINÁMICA Concepto de Dinámica.- Es una parte de la mecánica que estudia la reacción existente entre las fuerzas y los movimientos

Más detalles

Mecánica. Ingeniería Civil. Curso 11/12 Hoja 8

Mecánica. Ingeniería Civil. Curso 11/12 Hoja 8 Mecánica. Ingeniería ivil. urso 11/12 Hoja 8 71) Un automóvil está viajando a una velocidad de módulo 90 km/h por una autopista peraltada que tiene un radio de curvatura de 150 m. Determinar el ángulo

Más detalles

Movimiento Armónico Simple

Movimiento Armónico Simple Movimiento Armónico Simple Introducción al Movimiento Armónico Simple En esta página se pretende que el alumno observe la representación del Movimiento Armónico Simple (en lo que sigue M.A.S.), identificando

Más detalles

TALLER SOBRE SISTEMA DE PARTÍCULAS Y CUERPO RÍGIDO

TALLER SOBRE SISTEMA DE PARTÍCULAS Y CUERPO RÍGIDO UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN FACULTAD DE CIENCIAS- ESCUELA DE FÍSICA FÍSICA MECÁNICA (00000) TALLER SOBRE SISTEMA DE PARTÍCULAS Y CUERPO RÍGIDO Preparado por: Diego Luis Aristizábal Ramírez

Más detalles

ESTUDIO DEL MOVIMIENTO.

ESTUDIO DEL MOVIMIENTO. TEMA 1. CINEMATICA. 4º E.S.O. FÍSICA Y QUÍMICA Página 1 ESTUDIO DEL MOVIMIENTO. MAGNITUD: Es todo aquello que se puede medir. Ejemplos: superficie, presión, fuerza, etc. MAGNITUDES FUNDAMENTALES: Son aquellas

Más detalles

TRABAJO, POTENCIA y ENERGÍA

TRABAJO, POTENCIA y ENERGÍA TRABAJO, POTENCIA y ENERGÍA TPE 1.-Un automóvil de 800 kgr ejerce una fuerza de tracción de 120 kp y arrastra un remolque de 1000 kgr con una cuerda. Si no hay rozamientos, calculad: a) Aceleración del

Más detalles

Apuntes de FÍSICA Y QUÍMICA 1º BACHILLERATO

Apuntes de FÍSICA Y QUÍMICA 1º BACHILLERATO 1 Apuntes de FÍSICA Y QUÍMICA 1º BACHILLERATO IES FRANCÉS DE ARANDA. TERUEL. DEPARTAMENTO DE FÍSICA Y QUÍMICA 2 FÍSICA Y QUÍMICA. 1º BACHILLERATO. CONTENIDOS. I.- CINEMÁTICA. 1. Movimiento: sistema de

Más detalles

E G m g h r CONCEPTO DE ENERGÍA - CINÉTICA - POTENCIAL - MECÁNICA

E G m g h r CONCEPTO DE ENERGÍA - CINÉTICA - POTENCIAL - MECÁNICA Por energía entendemos la capacidad que posee un cuerpo para poder producir cambios en sí mismo o en otros cuerpos. Es una propiedad que asociamos a los cuerpos para poder explicar estos cambios. Ec 1

Más detalles

IES Menéndez Tolosa. La Línea de la Concepción. 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él?

IES Menéndez Tolosa. La Línea de la Concepción. 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él? IES Menéndez Tolosa. La Línea de la Concepción 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él? Si. Una consecuencia del principio de la inercia es que puede haber movimiento

Más detalles